SYLLABUS

0	
1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Department of Environmental Analysis and Engineering
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Master
1.6 Study programme /	Sustainable development and environmental management, Risk
Qualification	Assessment and Environmental Security/ master degree

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the Manag				gen	nent of contaminated	site	es - NME8121	
discipline								
2.2 Course coordinator				Assist. prof. Ph. D. Radu Mihaiescu				
2.3 Seminar coordinator			As	sist.	Ph. D. Maria Lucia H	Bizo		
2.4. Year of	2	2.5 Seme	ster	3	2.6. Type of	С	2.7 Type of discipline	DS/Mandatory
study					evaluation			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14
Time allotment:					hours
Learning using manual, course supp	port, b	oibliography, course no	otes		17
Additional documentation (in libraries, on electronic platforms, field documentation)					7
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					3
Evaluations					3
Other activities:					-
3.7 Total individual study hours		45			

5.7 Total marviadal study nouis	15
3.8 Total hours per semester	87
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	• Recommended: environmental chemistry, soil science, geology, environmental pollution sources (air, water, soil).
4.2. competencies	• Risk assessment knowledge is necessary, but these can be reiterated during the course.

5. Conditions (if necessary)

5.1. for the course	Course hall with computer and video projector
5.2. for the seminar /lab	Course hall with computer and video projector.
activities	• The students need to have their phones off.

• Delay is not accepted.

6. Specifi	c competencies acquired
	Basic knowledge on contaminated sites management.
	Understanding the environmental legislation related to contaminated sites.
Professional competencies	Acquiring skills in the use of the assessment methodology and remediation of contaminated sites for depollution.
Profe comp	Developing analytical abilities by assessing complex contamination situations and proposal of appropriate solutions for decontamination.
	Developing analytical abilities for environmental issues management generated by the presence of contaminated sites.
	Developing the ability to make connections with other courses studied.
rsal ncies	Development of environmental solutions which gather the interdisciplinary character of contaminated sites management.
Transversal competencies	Assimilation of specialized working technics for connection with other related fields, such as land-use planning.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• The course Management of contaminated sites provides an overall image regarding the management issues generated by contaminated sites (the investigation methodology, the goal, the politic and regulatory framework and the remediation aspects).
7.2 Specific objective of the discipline	 To get knowledge on the main terms used in the field of contaminated sites management and the comparative analysis of them; To present the current politics and legislation in this field, in Romania, EU and USA. To present the main management methodologies for contaminated sites applied al national level. Evaluation of the risk assessment concept in the context of contaminated sites. Present several decision support systems, which have the goal to provide proper strategies for contaminated sites rehabilitation. Develop a basic remediation technology for contaminated sites.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction	Interactive exposure	2 hours
General notions	• Dialogue	
Definitions	• Use of the course	
Classifications	material	
• The analysis of the "contaminated site"		

concept		
2. Current political and regulatory framework at international and national level	 Interactive exposure Dialogue Use of the course material 	2 hours
 3. Conceptual site model Sources Pathways Receptors 	Interactive exposureDialogueUse of the course support	2 hours
4. Contaminated sites investigation strategies	Interactive exposureDialogueUse of the course support	2 hours
5. Contaminated sites risk assessment- generalities	Interactive exposureDialogueUse of the course support	2 hours
6. Risk assessment steps: hazard identification, exposure assessment, toxicity assessment, risk characterization	Interactive exposureDialogueUse of the course support	2 hours
7. Decision support systems	Interactive exposureDialogueUse of the course support	2 hours
 8. Technologies for rehabilitation of contaminated sites General notions Classifications The choice of rehabilitation technology 	 Interactive exposure Dialogue Use of the course support 	2 hours
 9. Biological treatment technologies In-situ biodegradation In-situ bioventing Ex-situ biopiles Ex-situ land-farming Ex-situ slurry biodegradation 	 Interactive exposure Dialogue Use of the course support 	2 hours
 10. Physical treatment technologies In-situ venting In-situ soil vapor extraction In situ soil flushing Ex-situ soil washing 	 Interactive exposure Dialogue Use of the course support 	2 hours
 11. Chemical treatment technologies In situ soil chemical oxidation Ex situ solvent extraction 	Interactive exposureDialogueUse of the course support	2 hours
 12. Thermal treatment technologies In-situ and ex-situ vitrification Ex situ thermal desorption systems 	Interactive exposureDialogueUse of the course support	2 hours
 13. Containment technologies Solidification/stabilization Ex-situ land disposal or landfiling 	Interactive exposureDialogueUse of the course support	2 hours
14. Landscape application to the rehabilitation of sites contaminated	Interactive exposureDialogueUse of the course support	2 hours

Bibliography

- 1. EC, (European Commission), 2006, Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC, Brussels, 22.9.2006;
- 2. EC, (European Commission), 2006, European Commission. Thematic Strategy for Soil Protection Communication (COM(2006) 231;
- US-EPA, United States Environmental Protection Agency, 1989, Risk assessment guidance for superfund Vol 1, Human health evaluation manual, Washington DC: EPA/540//1-89/002. Final Report; 1989;
- 4. CLARINET, 2002, Sustainable Management of Contaminated Land: An Overview, A report from the Contaminated Land Rehabilitation Network for Environmental Technologies;
- 5. Marcomini A, Suter GW II, Critto A (Eds), 2009, Decision Support Systems for Risk Based Management of Contaminated Sites. New York, Springer Verlag;
- Anicăi, L., Bâsceanu, C., Duțu, M., Chineață, S., Anicăi, O., Stăniloae, D., Dumitrache, R., (2010), Managementul integrat al solurilor contaminate, Ed. Printech, București, ISBN 978-606-521-546-7, 201 p.,
- Bardos, P., Lewis, A., Nortcliff, S., Mariotti, C., Marot, F., and Sullivan, T., (2001a), Review of Decision Support Tools and their Use in Europe: Report of Clarinet Working Group 2, CLARINET WG2 Final Report, 192 p.,
- 8. Iancu, O. G., Buzgar, N., (ed.), (2008), Atlasul geochimic al metalelor grele din solurile municipiului Iași și împrejurimi, Editura Universității "Alexandru Ioan Cuza", ISBN 978-973-703-329-1, 34 pag.,
- NRC, (National Research Centre), (2009), Science and Decision: Advancing Risk Assessment, Committee on Improving Risk Analysis Approaches Used by the U.S. EPA, Board on Environmental Studies and Toxicology, Division on Earth and Life Studies, National Research Council of the National Academies, The National Academies Press, Washington, D.C., ISBN-13: 978-0-309-12047-0, 424 pp.,
- 10. World Bank, (2010), International experience in policy and regulatory frameworks for brownfield site management, Washington D.C.
- 11. Lye, A., Ludwig, R., Wardlaw, C., Les technologies d'assainissement des lieux contaminés: Manuel de référence, Document préparé par la Société Water Technology International Corp., Burlington (Ontario)/ Canada, Mars 1997.
- 12. Micle, V., Refacerea ecologică a zonelor degradate, Editura UTPRES, Cluj-Napoca, 2009.
- 13. Micle, V., Neag, G., Procedee și echipamente de depoluare a solurilor și apelor subterane, Editura UTPRES, 2009.
- 14. Micle, V., Sur, I., Stiinta solului Indrumator de laborator, Editura UT Pres, Cluj-Napoca, 2012.
- 15. Neag, G., Depoluarea solurilor si a apelor subterane, Editura Casa Cartii de Stiinta, Cluj-Napoca, 1997.
- 16. Bica, I., Poluarea acviferelor. Tehnici de remediere, Editura *H*G*A*, București, 1998.
- 17. Mitrea, V., Peisagistică curs, Volumul 1, Universitatea Tehnică Cluj-Napoca, 2000
- Stezar I.C., Ozunu A., Barry D.L., 2014, The role of stakeholder attitudes in managing contaminated sites: Survey of Romanian stakeholder awareness, ISSN 0944-1344, Volume 21, Number 1, Environ Sci Pollut Res (2014) 21:787-800, DOI 10.1007/s11356-013-2238-0.

8.2 Seminar / laboratory	Teaching methods	Remarks
		The seminar is
		structured as 2 hours

		classes every second week
1. Introduction – Environmental impact generated on soil, subsoil and underground water by anthropic activities	Interactive exposureExplanationsDialogue	
2. Environmental legislation related to contaminated sites	Interactive exposureExplanationsDialogue	
3. Identification of contaminated sites	Interactive exposureExplanationsDialogue	
4. Assessment of contaminated sites	Interactive exposureExplanationsDialogue	
5. Decontamination methods for polluted areas	Interactive exposureExplanationsDialogue	
6. Remediation technologies for soil and underground water	Interactive exposureExplanationsDialogue	
7. Environmental rehabilitation and monitorization of depolluted sites	Interactive exposureExplanationsDialogue	

Bibliography

- 1. Bica, I., 2014, Remedierea siturilor contaminate, Orizonturi Universitare Timișoara;
- 2. CLARINET, 2002, Sustainable Management of Contaminated Land: An Overview, A report from the Contaminated Land Rehabilitation Network for Environmental Technologies;
- 3. Hotărârea Guvernului României nr. 683 din 31/08/2015 privind aprobarea Strategiei Naționale și a Planului Național pentru Gestionarea Siturilor Contaminate din România;
- 4. Hotărârea Guvernului României nr. 1408 din 23/11/2007 privind modalitățile de investigare și evaluare a poluării solului și subsolului;
- 5. Hotărârea Guvernului României nr. 1403 din 19/11/2007 privind refacerea zonelor în care solul, subsolul si ecosistemele terestre au fost afectate;
- 6. Ordin nr. 184/1997 Ordin al ministrului apelor, pădurilor și protecției mediului pentru aprobarea Procedurii de realizarea bilanțurilor de mediu;
- 7. Ordin nr. 756/1997 Ordin al ministrului apelor, pădurilor și protecției mediului pentru aprobarea Reglementării privind evaluarea poluării mediului.
- 8. Micle, V., 2009, Refacerea ecologică a zonelor degradate, U.T. Press, Cluj-Napoca;
- 9. Strategia națională și planul național de acțiune pentru gestionarea siturilor contaminate din România, http://www.mmediu.ro/beta/wp-content/uploads/2013/10/2013-10-29_strategie.pdf;
- 10. World Bank, (2010), International experience in policy and regulatory frameworks for brownfield site management, Washington D.C.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the discipline is consistent with the similar disciplines from other Romanian

universities and universities from abroad, as well as with the requirements of the potential employers, private and public organizations.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	• The interest shown for the aspects presented and the active participation	Oral- involvement in discussions and the quality of the questions asked.	10%	
	• The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	70%	
10.5 Seminar/lab activities	• Activity in the seminar: explanation and correlation skills; complete and correct solving of tasks	Oral – presentation of projects made individual/in teams	20%	
10.6 Minimum performance standards				

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the subjects and has the ability to establish certain connections and to use the knowledge in solving different problems.
- Presence at 75% of the seminars.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5. •

Date

Signature of course coordinator

Signature of seminar coordinator

Assist. Ph. D. Maria Lucia Bizo

17.04.2010

Assist. prof. Ph. D. Radu Mihaiescu

Date of approval

Signature of the head of department Assist. prof. Ph. D. Radu Mihaiescu

Mr.

Mit