SYLLABUS

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Department of Environmental Analysis and Engineering
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Master
1.6 Study programme /	Sustainable Development and Environmental Management
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Integrated Management of Natural and Technological Risks						echnological Risks	
2.2 Course coor	din	ator	CS III Dr. Lucrina Ștefănescu, Lect. Dr. Eng. Zoltán Török				
2.3 Seminar coordinator				CS III Dr. Lucrina Ștefănescu, Lect. Dr. Eng. Zoltán Török			
2.4. Year of	1	2.5	2	2.6. Type ofE2.7 Type ofCompulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					7
Tutorship					0
Evaluations					4
Other activities:					-
3.7 Total individual study hours 53					

3.7 Total individual study hours	53
3.8 Total hours per semester	95
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Basics of environmental science and engineering: natural hazards,	
	risk management process, technological hazards, risk assessment	
	procedure	
4.2. competencies	Practical: implementation and use of the risk management process	
	Technical: use of computer software	

5. Conditions (if necessary)

5.1. for the course	Necessity of digital projector and computer (laptop)
---------------------	--

6. Specifi	c competencies acquired
	• Understanding the concepts of natural and technological hazards and risks
	• Knowledge of specific integrated activities, measures and tasks, legally organized and
es	realized, with the aim of prevention and mitigation of natural and technological disasters
ion	• Knowledge of institutional structures and actors in the domain of emergency situations
Professional competencies	generated by natural and technological hazards.
rof	• Learning of specific measures to be taken in case of natural and technological risks
P 03	• Learning to implement and use the risk management process
	Learning to use specific risk analysis methods
	• Learning to develop specific environmental studies: hazard identification, risk analysis.
	• ability to conduct literature research in all the existing formats;
al	• knowledge of using specific computer software in the field of environmental studies;
svers eteno	• acquiring knowledge of developing a research project;
Transversal competencies	• teamwork.

ifi C

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 presentation of the natural risk management methodology and emergency situation caused by these risks, the legal framework for the specific measures and activities in the management procedure, institutional structures and specific measure for the mitigation of the risks knowledge of developing an environmental risk study 	
7.2 Specific objective of the discipline	 coverage of the risk management terminology knowledge of methods and techniques used in the risk management presentation of the stages in the risk management and the specific actions knowledge of developing an environmental risk or impact study study and knowledge of techniques and procedures for hazard identification, qualitative and quantitative environmental risk analysis 	

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction: motivation, methodology, terminology	Presentation Interactive discussions	Introductory course to present the conceptual framework approach
2. Risk management: steps in the overall risk assessment: processes, methods, advantages. Distribution of the management process in function of risk types generating emergency situations.	Presentation Interactive discussions	Presentation of risk management methodology
3. Emergency situations management	Presentation Interactive discussions	Disaster management stages
4. Institutional structures involved in risk and	Presentation	Presentation of the

	Latence diagonalisme	Notional Constant for
emergency situations management	Interactive discussions	National System for Emergency Situations
		Management and other
		national and
		international actors in
		the risk management
5. Legal framework related to risk and emergency	Presentation	Presentation of the
situations management. Risk management	Interactive discussions	legal framework
strategies		specific for Romania
6. Typology of risks and their specific treatment	Presentation	Presentation of specific
measures: endogenous risks	Interactive discussions	risk reduction
		measures with
		specificity to
		Romanian territory
7. Typology of risks and their specific treatment	Presentation	Presentation of specific
measures: exogenous risks	Interactive discussions	risk reduction
		measures with
		specificity to
		Romanian territory
8. Seveso Directives – history and actual	Presentation	Introduction to the
framework	Interactive discussions	Seveso Directives
9. Major Industrial Accident Prevention Politics	Presentation	Requirements and
and Safety Reports from the perspective of	Interactive discussions	content of these
European Union and Romanian methodologies		documents. Examples.
10. Technological risk management. General steps,	• Interactive exposure	Introduction.
terminology and European legislation.	• Explanation	Techniques used in the
	Conversation	Change management.
	Didactical	
	demonstration	
11. NATECH risks. Triggering events and possible	• Interactive exposure	Presentation of the
scenarios.	• Explanation	methodology. Case
	Conversation	studies.
	Didactical	
	demonstration	
12. Qualitative hazard identification and risk analysis	Interactive exposure	Risk communication in
methods: Preliminary Hazard Assessment (PHA) and	Explanation	the Seveso III
Hazard and Operability Study (HAZOP)	ExplanationConversation	Directive;
	Didactical	,
	demonstration	
13. Quantitative risk analysis: Fault trees and event		Quantitative risk
trees.	 Interactive exposure Explanation 	analysis. Case studies.
	Explanation	unarysis. Case studies.
	Conversation	
	Didactical	
14 Quantitativa rick analyzia. Design of officets on 1	demonstration	Quantitative risk
14. Quantitative risk analysis: Basics of effects and	• Interactive exposure	
consequence analysis. Individual and social risk results.	• Explanation	analysis. Case studies
1050115.	Conversation	
	Didactical	
	demonstration	
Bibliography		

Bibliography

1. B Wisner, P. Blaikie, T. Cannon, I. Davis; At Risk: Natural hazards, people's vulnerability and disasters, Routledge, London, 2004.

2. A. Randall: Risk and Precaution, Cambridge, UK, 2011.

3. European Environmental Agency: Environmental Risk Assessment: Approaches, Experiences and

Information Sources, EEA, 1998.

4. C. E. Haque (Ed.): Mitigation of Natural Hazards and Disasters, Springer, Canada, 2005.

5. Frank P. Lees: Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Second edition, United Kingdom, 1996.

6. Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.

7. P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, Hague, 1999.

8. C. A. Ericson: Hazard Analysis Techniques for System Safety, Ed. Wiley-Interscience, New Jersey, 2005.

9. ***American Institute of Chemical Engineers (AIChE): *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, 2000.

10. T. Kletz, HAZOP & HAZAN. Notes on the Identification and Assessment of Hazards, Institution of Chemical Engineers, Fourth Edition, UK, 1999.

11. N. Hyatt, *Guidelines for Process Hazards Analysis, Hazard Identification & Risk Analysis*, Ed. Dyadem Press, Ontario, 2003.

12. A. J. Jakeman, A.A. Voinov, A.E. Rizzoli, S.H. Chen (Eds.): Environmental Modelling, Software And Decision Support. State of the Art and new perspectives. Elsevier, 2008.

13. G.E. DeVaull, J.A. King, R. J. Lantzy, D. J. Fontaine (Eds.): Understanding Atmospheric Dispersion of Accidental Releases, AIChE, New York, 1995.

14. ***American Institute of Chemical Engineers (AIChE): *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, 2000.

18. C. A. Ericson: *Hazard Analysis Techniques for System Safety*, Ed. Wiley-Interscience, New Jersey, 2005.

15. Gheorghiu A.-D., Török Z., Ozunu A., Antonioni G., Cozzani V., 2014, Comparative Analysis of Technological and Natech Risk for two Petroleum Products Tanks Located in a Seismic Area, Environmental Engineering and Management Journal, Vol.13/8, pp. 1887-1892.

16. GHEORGHIU A.-D., TÖRÖK Z., OZUNU A., ANTONIONI G., COZZANI V., 2014, Natech Risk Analysis in the Context of Land Use Planning. Case Study: Petroleum Products Storage Tank Farm Next to a Residential Area., Chemical Engineering Transactions, Vol. 36, pp. 439-445.

17. Gheorghiu A.-D., Török Z., Ozunu A., 2013, How Can Existing Risk Assessment Methodologies Be Used in a Systematic Manner, in the Extractive Mining Industry?, Journal of Environmental Protection and Ecology, Vol.14/4, pp. 1597-1607.

18. Zoltán TÖRÖK, Nicolae AJTAI, Adrian T. TURCU, Alexandru OZUNU - Comparative consequence analysis of the BLEVE phenomena in the context on Land Use Planning; Case study: The

Feyzin accident, Process Safety and Environmental Protection, 89 (2011) pp. 1-7.

19. TÖRÖK, Z., OZUNU, A., CORDOŞ E., Chemical risk analysis for land-use planning. I. storage and handling of flammable materials, Environmental Engineering and Management Journal, January 2011, Vol.10, No. 1, 81-88.

Internet sites:

http://ec.europa.eu/environment/seveso/index.htm http://www.igsu.ro/ http://mahb.jrc.it/index.php?id=9

Access for the references: Central University Library (BCU), Library of the Faculty of Environmental Science and Engineering.

Electronic Library of the Research Centre for Disaster Management, Faculty of Environmental Science and Engineering.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction. Related topics. Structure.		Presentation of the
		seminar structure and
		workplan.

2. Natural phenomena generating risks and disasters.	Presentation	Presentation of specific
Typology, affected areas	Teamwork	phenomena
	Brainstorming	
3. Methods for assessing risk perception. questionnaire	Presentation	Discussion in items
	Teamwork	and development of a
	Brainstorming	questionnaire for
		natural risk perception.
4. Example: Risk analysis for a given area	Presentation	Application of the
	Teamwork	methodology.
	Brainstorming	
5. Romania. Hazard, risk and seismic management	Presentation	Seismic data, macro
	Teamwork	and micro-zoning
	Brainstorming	maps, construction
		safety
6. Floods management and emergency situations in	Presentation	Case studies
Romania	Teamwork	
	Brainstorming	
7. Emergency situations management for extreme	Presentation	Case studies
meteorological phenomena in Romania	Teamwork	
	Brainstorming	
8. Synthesis on natural risk management	Presentation	Presentation
	Brainstorming	
9. Dangerous properties of chemical substances.	• Lab assignment	Database analysis
	Explanation	
	Conversation	
10. Natech risk analysis example. Triggering event	• Lab assignment	
frequency analysis, consequence analysis.	Explanation	
	Conversation	
11. PHA and HAZOP exercises	• Lab assignment	Team work exercises
	Explanation	
	Conversation	
12. Fault tree and Event tree exercises	Lab assignment	Team work exercises
12. I duit free the Event free exclenses	Eab assignmentExplanation	really work excretises
	ExplanationConversation	
13. Physical effects and consequence analysis		Team work exercises
• • •	• Lab assignment	really work exercises
exercises	• Explanation	
	Conversation	
14. Seminar examination	Written project and	Seminar examination
	presentation by each	
	student	

1. B Wisner, P. Blaikie, T. Cannon, I. Davis; At Risk: Natural hazards, people's vulnerability and disasters, Routledge, London, 2004.

2. A. Randall: Risk and Precaution, Cambridge, UK, 2011.

3. European Environmental Agency: Environmental Risk Assessment: Approaches, Experiences and Information Sources, EEA, 1998.

4. C. E. Haque (Ed.): Mitigation of Natural Hazards and Disasters, Springer, Canada, 2005.

5. Frank P. Lees: Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Second edition, United Kingdom, 1996.

6. Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.

7. P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, Hague, 1999.

8. C. A. Ericson: Hazard Analysis Techniques for System Safety, Ed. Wiley-Interscience, New Jersey, 2005.

9. ***American Institute of Chemical Engineers (AIChE): *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, 2000.

10. T. Kletz, HAZOP & HAZAN. Notes on the Identification and Assessment of Hazards, Institution of Chemical Engineers, Fourth Edition, UK, 1999.

11. N. Hyatt, *Guidelines for Process Hazards Analysis, Hazard Identification & Risk Analysis*, Ed. Dyadem Press, Ontario, 2003.

12. P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, Hague, 1999.

13. Frank P. Lees: Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Second edition, United Kingdom, 1996.

14. G.E. DeVaull, J.A. King, R. J. Lantzy, D. J. Fontaine (Eds.): Understanding Atmospheric Dispersion of Accidental Releases, AIChE, New York, 1995.

Internet sites:

http://ec.europa.eu/environment/seveso/index.htm http://www.igsu.ro/ http://mahb.jrc.it/index.php?id=9

Access for the references: Central University Library (BCU), Library of the Faculty of Environmental Science and Engineering.

Electronic Library of the Research Centre for Disaster Management, Faculty of Environmental Science and Engineering.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The knowledge acquired during the course can be used in the following domains: environment protection, process industries: chemical, pharmaceutical, petrochemical, food industry etc. and academic domains;
- The graduates of this course can contribute in the development of natural and technological risk studies, safety reports or major industrial accidents prevention policies and to work in consultancy in the field of risk assessment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Problem solving Correctness of the results and answers 	Written exam (2 hours)	80 %
10.5 Seminar/lab activities	The activity of the student	Score	5 %
	The correctness of the project, accuracy of the presentation, correctness of the responses.	Project presentation (10 minutes/student)	15 %
10.6 Minimum performance	e standards		
studied domain, that (s)he is capable of stating these	eptable level of knowledge ar knowledge in a coherent for knowledge in solving differe	m, that (s)he has the

- Successful passing of the exam is conditioned by the final grade that has to be at least 5.
- Minimum 80% presence at seminar/lab activities.

Date	Signature of course coordinator	Signature of seminar coordinator	
10.04.2017	CS III Dr. Lucrina Ștefănescu	CS III Dr. Lucrina Ștefănescu	
	Lect. Dr. Eng. Zoltán Török	Lect. Dr. Eng. Zoltán Török	

Date of approval

Signature of the head of department