SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Department of Environmental Analysis and Engineering
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Master
1.6 Study programme / Qualification	Sustainable Development and Environmental Management

2. Information regarding the course

2.1 Name of the courseFire and explosion risk assessment							
2.2 Course coordinator Lect. Dr. Eng. Zoltán Török							
2.3 Seminar coordinator			Lect. Dr. Eng. Zoltán Török				
2.4. Year of study	1	2.5 Semester	1	2.6. Type ofC2.7 Type ofMandatory			Mandatory
				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

		,			
3.1 Hours per week	2	Of which: 3.2 course	1	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	28	Of which: 3.5 course	14	3.6 seminar/laboratory	14
Time allotment:					hours
Learning using manual, course supp	port, b	ibliography, course no	tes		44
Additional documentation (in libraries, on electronic platforms, field documentation)					44
Preparation for seminars/labs, homework, papers, portfolios and essays					154
Tutorship					0
Evaluations					4
Other activities:					-
3.7 Total individual study hours $19 \times 14 = 266$					

3.8 Total hours per semester	294
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Basics of environmental risk assessment procedures, chemistry and mathematics
4.2. competencies	Technical: use of computer software

5. Conditions (if necessary)

5.1. for the course	Necessity of digital projector and computer (laptop)	
5.2. for the seminar /lab activities	Laboratory with computers and specific modeling software;	

6. Specific competencies acquired

Professional , competencies	•	Understanding the concepts of technological hazards and risks, related to fire and explosion hazards in the process industries.
ssio eten	•	Learning to use specific risk analysis methods and software
ofe npe	•	ATEX zoning for systems with gas and/or dust
Pro	•	Knowing of ATEX marks and equipment.
S	•	Ability to conduct literature research in all existing formats;
versal tencies	•	Knowledge of using specific computer software in the field of environmental studies;
ver sten	•	Acquiring knowledge of developing a research project;
adu	•	Teamwork;
T ransversal competencie		

7. Obiectivele disciplinei (reieșind din grila competențelor acumulate)

7.1 General objective of the discipline	 knowledge of developing a risk study related to fire and explosion in the process industries;
7.2 Specific objective of the discipline	 Knowing the necessities of a fire and risk assessment procedure Knowledge in theory and practice of fire and explosion risk assessment Use of methods and techniques for quantitative fire and explosion risk assessment

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction in the prevention of fires and explosions. Definitions and terms. Fires: types, effects, propagation Fire hazards of combustible materials Explosions. Definitions and terms. Explosions: types, effects, propagation Explosion hazards of combustible materials 	 Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration 	
3. Emergency situations involving fires and explosion. Case studies and historical accidents. Lessons learned.	Interactive exposureExplanationConversation	
4. European and national legislation on fire and explosion prevention. ATEX Directives.	Interactive exposureExplanationConversation	
 European and national legislation on fire and explosion prevention. ATEX Directives. ATEX zoning for flammable gas and dust. 	Interactive exposureExplanationConversation	
 6. ATEX equipments: marking styles temperature classes protection classes (IP) equipment classification 	 Interactive exposure Explanation Conversation 	
 Fire and explosion risk analysis methods and techniques. 	Interactive exposureExplanationConversation	

References:

- 1. ***American Institute of Chemical Engineers (AIChE), *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, **2000**.
- 2. Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.
- 3. P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, Hague, 1999.
- 4. S. Mannan, Lees' Loss Prevention in the Process Industries. Hazard Identification, Assessment and Control, Elsevier, Third Edition, Oxford, 2005.
- 5. H. A. Wray, *Manual on flash point standards and their use: methods and regulations*, Ed. ASTM, Philadelphia, **1992**.
- 6. R. K. Eckhoff, Explosion Hazards in the Process Industries, Ed. Golf Publishing Co., Texas, 2005.
- 7. W. P. M. Mercx, A. C. van den Berg, *Vapour cloud explosion. Chapter 5 in C.J.H. Van den Bosch, R.A.P.M. Weterings (eds). Methods for the calculation of physical effects. "Yellow Book",* Committee for the Prevention of Disasters, VROM, Third Edition, The Netherlands, **2005**.
- 8. ***American Institute of Chemical Engineers (AIChE), *DOW'S Fire & Explosion Index. Hazard Classification Guide*, Seventh Edition, New York, **1994**.
- 9. Crăciun I., Lencu V., Calotă S., 1993, Stabilirea și prevenirea cauzelor de incendiu, Ed. Teh.
- 10. DIRECTIVA 2014/34/UE A PARLAMENTULUI EUROPEAN ȘI A CONSILIULUI din 26 februarie 2014 privind armonizarea legislațiilor statelor membre referitoare la echipamentele și sistemele de protecție destinate utilizării în atmosfere potențial explozive (reformare)
- 11. ATEX 2014/34/EU Guidelines Guide to application of Directive 2014/34/EU.
- 12. EC, 1999, Directive 1999/92/EC of the European Parliament and of the Council of 16 December 1999 on minimum requirements for improving the safety and health protection of workers potentially at risk from explosive atmospheres (15th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC), Official Journal of the European Communities, published in Official Journal L 23/57 of 28. 1. 2000.
- 13. Explosion Testing, 2010, <u>www.explosiontesting.co.uk</u>
- Gheorghiu A.-D., Török Z., Ozunu A., Antonioni G., Cozzani V., 2014, Comparative Analysis of Technological and Natech Risk for two Petroleum Products Tanks Located in a Seismic Area, Environmental Engineering and Management Journal, Vol.13/8, pp. 1887-1892.
- 15. GHEORGHIU A.-D., TÖRÖK Z., OZUNU A., ANTONIONI G., COZZANI V., 2014, Natech Risk Analysis in the Context of Land Use Planning. Case Study: Petroleum Products Storage Tank Farm Next to a Residential Area., Chemical Engineering Transactions, Vol. 36, pp. 439-445.
- Gheorghiu A.-D., Török Z., Ozunu A., 2013, How Can Existing Risk Assessment Methodologies Be Used in a Systematic Manner, in the Extractive Mining Industry?, Journal of Environmental Protection and Ecology, Vol.14/4, pp. 1597-1607.
- 17. Zoltán TÖRÖK, Nicolae AJTAI, Adrian T. TURCU, Alexandru OZUNU Comparative consequence analysis of the BLEVE phenomena in the context on Land Use Planning; Case study: The Feyzin accident, Process Safety and Environmental Protection, 89 (2011) pp. 1-7.
- TÖRÖK, Z., OZUNU, A., CORDOŞ E., Chemical risk analysis for land-use planning. I. storage and handling of flammable materials, Environmental Engineering and Management Journal, January 2011, Vol.10, No. 1, 81-88.

8.2 Seminary / laboratory	Teaching methods	Remarks
I.	• Interactive exposure	Content of the project:
1. Presentation of the specific	• Explanation	Selection of the site
topics, important references	Conversation Definition of the objective	
and the content of the		Characterizing the technological
individual projects.		process
2. Preparation of the project:		Hazard identification: gases and
choosing the technological		dusts
equipment, definition of		ATEX zoning

working parameters, environment, and substances.		Fire and explosion risk assessment Results and discussion Conclusions
II.1. Project development: Effects and consequence analysis for fires.	 Interactive exposure Explanation Conversation Work on computers using modeling tools 	Use of EFFECTS modeling tool.
III. 1. Project development: Effects and consequence analysis for explosion.	 Interactive exposure Explanation Conversation Work on computers using modeling tools 	Use of EFFECTS modeling tool.
IV.1. Schemes of territorial risks.2. Classification of dangerous areas for gases and dusts.	Interactive exposureExplanationConversation	
V. Project development: ATEX zoning for gases ATEX zoning for dusts	 Interactive exposure Explanation Conversation Group work on drawings 	
VI. Project development: - Individual risk analysis - Social risk analysis	 Interactive exposure Explanation Conversation Work on computers using modeling tools 	Use of Riskcurves modeling tool.
VII. Colloquy: Presentation of the projects and written exam.	Powerpoint presentations and written exam.	

References:

- 1. ***American Institute of Chemical Engineers (AIChE), *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, **2000**.
- 2. Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.
- 3. P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, Hague, 1999.
- 4. S. Mannan, Lees' Loss Prevention in the Process Industries. Hazard Identification, Assessment and Control, Elsevier, Third Edition, Oxford, 2005.
- 5. H. A. Wray, *Manual on flash point standards and their use: methods and regulations*, Ed. ASTM, Philadelphia, **1992**.
- 6. R. K. Eckhoff, *Explosion Hazards in the Process Industries*, Ed. Golf Publishing Co., Texas, 2005.
- 7. W. P. M. Mercx, A. C. van den Berg, *Vapour cloud explosion. Chapter 5 in C.J.H. Van den Bosch, R.A.P.M. Weterings (eds). Methods for the calculation of physical effects. "Yellow Book"*, Committee for the Prevention of Disasters, VROM, Third Edition, The Netherlands, **2005**.
- 8. ***American Institute of Chemical Engineers (AIChE), *DOW'S Fire & Explosion Index. Hazard Classification Guide*, Seventh Edition, New York, **1994**.
- 9. Crăciun I., Lencu V., Calotă S., 1993, Stabilirea și prevenirea cauzelor de incendiu, Ed. Teh.
- 10. DIRECTIVA 2014/34/UE A PARLAMENTULUI EUROPEAN ȘI A CONSILIULUI din 26 februarie 2014 privind armonizarea legislațiilor statelor membre referitoare la echipamentele și sistemele de protecție destinate utilizării în atmosfere potențial explozive (reformare)
- 11. ATEX 2014/34/EU Guidelines Guide to application of Directive 2014/34/EU.
- 12. EC, 1999, Directive 1999/92/EC of the European Parliament and of the Council of 16 December 1999 on minimum requirements for improving the safety and health protection of workers potentially at risk from explosive atmospheres (15th individual Directive within the meaning of Article 16(1) of

Directive 89/391/EEC), Official Journal of the European Communities, published in Official Journal L 23/57 of 28. 1. 2000.

- 13. Explosion Testing, 2010, <u>www.explosiontesting.co.uk</u>
- Gheorghiu A.-D., Török Z., Ozunu A., Antonioni G., Cozzani V., 2014, Comparative Analysis of Technological and Natech Risk for two Petroleum Products Tanks Located in a Seismic Area, Environmental Engineering and Management Journal, Vol.13/8, pp. 1887-1892.
- 15. GHEORGHIU A.-D., TÖRÖK Z., OZUNU A., ANTONIONI G., COZZANI V., 2014, Natech Risk Analysis in the Context of Land Use Planning. Case Study: Petroleum Products Storage Tank Farm Next to a Residential Area., Chemical Engineering Transactions, Vol. 36, pp. 439-445.
- 16. Gheorghiu A.-D., Török Z., Ozunu A., 2013, How Can Existing Risk Assessment Methodologies Be Used in a Systematic Manner, in the Extractive Mining Industry?, Journal of Environmental Protection and Ecology, Vol.14/4, pp. 1597-1607.
- 17. Zoltán TÖRÖK, Nicolae AJTAI, Adrian T. TURCU, Alexandru OZUNU Comparative consequence analysis of the BLEVE phenomena in the context on Land Use Planning; Case study: The Feyzin accident, Process Safety and Environmental Protection, 89 (2011) pp. 1-7.
- TÖRÖK, Z., OZUNU, A., CORDOŞ E., Chemical risk analysis for land-use planning. I. storage and handling of flammable materials, Environmental Engineering and Management Journal, January 2011, Vol.10, No. 1, 81-88.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The knowledge acquired during the course can be used in the next domains: environment protection, process industries: chemical, pharmaceutical, petrochemical, food industry etc. and academic domains; The graduates of this course can contribute in the development of fire and explosion risk studies.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	• Problem solving	Colloquy: Questions from	50 %			
	Correctness of the answers	theory				
10.5 Seminar/lab activities	Participation at seminar	Colloquy: Project	50 %			
	activities					
	Correctness of the results					
	and answers;					
	Scientific presentation of					
	results.					
10.6 Minimum performance standards						
Minimum grade for promotion of the exam: 5						
Minimum presence at seminar activities: 80%						

Date

Signature of course coordinator

Signature of seminar coordinator

11.04.2018

Signature of the head of department

Date of approval