SYLLABUS

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Department of Environmental Analysis and Engineering
1.4 Field of study	Risk Assessment and Environmental Security
1.5 Study cycle	Master
1.6 Study programme /	Environmental Management and Sustainable Developement/
Qualification	Master degree

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	cipline	INTEGRATED MANAGEMENT OF WATER RESOURCES						
			AN	AND PROCEDURES FOR WASTEWATER TREATMENT-					
			NME8212						
2.2 Course coor	dina	ator	Associate professor PhD Radu Mihăiescu						
2.3 Seminar coordinator				Associate professor PhD Radu Mihăiescu					
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	DA		
study		Semester		evaluation		discipline			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	liography, course notes	5		35
Additional documentation (in libraries, on electronic platforms, field documentation)					33
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					-
3.7 Total individual study hours108					
3.8 Total hours per semester		150			
3.9 Number of ECTS credits		5			

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Laboratory with computers;

activities	

6. Specif	ic com	petencies acquired
	•	Explain the concept and principles of Integrated Water Resource Management (IWRM)
cies	•	Describe the methodologies and tools for practicing IWRM
enc	•	Analyze the EU WFD as an example of IWRM in practice
pet	•	Work with integrated water management projects and get a fair insight in in the EU WFD
l com	•	Describe different methods for wastewater treatment and environmental effects of wastewater
siona	•	apply methods from mathematical modelling to describe different waste water treatment processes
ofes	•	apply simulation tools for waste water treatment, and to interpret and evaluate the results
Prc	•	grasp the microbiological processes in the activated sludge process
, ,	•	account for how automatic control is used to optimise the waste water treatment
	•	Autonomy and responsibility.
	•	Relational attitude and open, honest, cooperative, responsive communication.
	•	Analysis and interpretation availability of values that describe a situation, event or behavior.
sal	•	Foster imagination, willingness to conduct self in relation to others based on empathy and
/er/ ten		receives messages with emotional content.
nsv	•	Acceptance evaluation from others.
ral om	•	moral integrity, balance of character, and strength of conviction critical in promoting
ΗJ		positive values authentic social community

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The course gives insights in the theoretical and methodological elements underlying the notion of 'integrated water resources management' (IWRM), with focus on concepts and tools for sustainable planning and management of water resources. To introduce the problem-solving concepts and tools commonly used in environmental engineering, To present the fundamental operations and processes that are used in environmental engineering, with a focus on water and wastewater treatment processes.
7.2 Specific objective of the discipline	 To provide a broad background on the occurrence, use, management, and conservation of water and water resources. To understand physical hydrology and the hydrologic basis of water resources.Explain what wastewater is and describe how it is characterized. Describe the objectives and importance of (i) physical treatment, (ii) biological treatment, and (iii) chemical treatment in the handling of municipal wastewater. Students will be able to analyze wastewater data and develop a preliminary design of the primary, secondary, advanced, and sludge treatment processes for a wastewater treatment plant.

8. Content

8.1 Course	Teaching methods	Remarks
1. Water cycle. Water distribution on Earth. Natural characteristics of	• Interactive exposure	2 hours

surface and underground water.	 Explanation Conversation 	
2. Role of natural factors in defining watershed evolution. Natural and human induced changes.	 Interactive exposure Explanation Conversation 	2 hours
3. The necessity of integrated water management. History of water management. Concepts and theoretical perspectives on IWRM. Principles, methodologies & tools for practising IWRM	Interactive exposureExplanationConversation	2 hours
4. Water Framework Directive	Interactive exposureExplanationConversation	2 hours
5. Assessing pressures and impacts on water bodies. Water monitoring	Interactive exposureExplanationConversation	2 hours
 Hazardous chemical pollutants. Eutrophication of water bodies 	Interactive exposureExplanationConversation	2 hours
7. The role of wetlands in integrated water resource management.	Interactive exposureExplanationConversation	2 hours
8. Renaturation of watercourses	Interactive exposureExplanationConversation	2 hours
9. River basin management in the context of climate change	 Interactive exposure Explanation Conversation 	2 hours
10. Coastal water management. The Seas Directive.	Interactive exposureExplanationConversation	2 hours
11. Wastewater treatment. General aspects. Primary Treatment.	Interactive exposureExplanationConversation	2 hours
12. Secondary Treatment (biologic treatment).	Interactive exposureExplanationConversation	2 hours
13. Tertiary Treatment (Nutrient Removal). Nitrification / Denitrification Phosphorus Removal	Interactive exposureExplanationConversation	2 hours
14. Sludge Treatment and Disposal.	Interactive exposureExplanationConversation	2 hours

Bibliography

1. Edzwald, J.K. (2011), Water Quality & Treatment. A Handbook on Drinking Water, Sixth Edition, ISBN: 978-0-07-163010-8, McGraw-Hill

- 2. Loucks, D.P., van Beek, E. (2005), Water Resources Systems Planning and Management An Introduction to Methods, Models and Applications, ISBN 92-3-103998-9, UNESCO.
- 3. Mihăiescu, R. (2018), Integrated management of water resources and procedures for wastewater treatment, lecture notes.
- 4. Robescu, D., Szabolcs, L., Robescu, Diana, Verestoy, A. (2004), Wastewater treatment technologies,

installations and equipments. Ed. Tehnică, București.

- 5. http://unesdoc.unesco.org/images/0018/001818/181891E.pdf
- 6. <u>http://www.un.org/waterforlifedecade/iwrm.shtml</u>
- 7. <u>http://www.unece.org/fileadmin/DAM/env/water/publications/NPD_IWRM_study/ECE_MP.WAT_44_en.pdf</u>
- 8. http://www.unwater.org/downloads/GWP-INBOHandbookForIWRMinBasins.pdf

		<u>.pui</u>
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Analysis of factors that shape the	• Interactive exposure	2 hours
nature of watersheds	Explanation	
	Brainstorming	
2. Natural and human induced changes	Interactive exposure	2 hours
	• Explanation	
	Brainstorming	
3. Rehabilitation of water courses	Interactive exposure	2 hours
	• Explanation	
	Brainstorming	
4. Criteria of water monitoring,	Interactive exposure	2 hours
assessment and management according	Explanation	
to WFD	Brainstorming	
5. Watershed management plan. Study	Interactive exposure	2 hours
cases Romania	Explanation	
	Brainstorming	
6. Field trip to WWTP Cluj-Napoca.	Interactive exposure	2 hours
	Explanation	
7. Discussion of case studies. Powerpoint	Lab assignment	2 hours
presentations and essays.	• thematic analysis	

Bibliography

- 9. Edzwald, J.K. (2011), Water Quality & Treatment. A Handbook on Drinking Water, Sixth Edition, ISBN: 978-0-07-163010-8, McGraw-Hill
- 10. Loucks, D.P., van Beek, E. (2005), Water Resources Systems Planning and Management An Introduction to Methods, Models and Applications, ISBN 92-3-103998-9, UNESCO.
- 11. Mihăiescu, R. (2017), Integrated management of water resources and procedures for wastewater treatment, lecture notes.
- 12. Robescu, D., Szabolcs, L., Robescu, Diana, Verestoy, A. (2004), Wastewater treatment technologies, installations and equipments. Ed. Tehnică, București.
- 13. http://unesdoc.unesco.org/images/0018/001818/181891E.pdf
- 14. http://www.un.org/waterforlifedecade/iwrm.shtml
- 15. http://www.unece.org/fileadmin/DAM/env/water/publications/NPD_IWRM_study/ECE_MP.WAT_44_ en.pdf
- 16. <u>http://www.unwater.org/downloads/GWP-INBOHandbookForIWRMinBasins.pdf</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content structure of the discipline was structured by studying the recent monographs in the field and by consulting the programs and the available notes from some recognized institutions in the field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• The correctness and completeness of the accumulated knowledge.	Written exam	75%

10.5 Seminar/lab activities	• Project/ essay	Evaluation of the project (documentation and demonstration)	25%
10.6 Minimum performance standards			

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the: - Determinants of the quantity and quality of water resources.

- The principles of integrated water resource management.

- Identification and classification of different wastewater sources and their treatment requirements based on their discharge or final use.

The student will prepare and sustain a project / essay according to the content of the framework. Obtaining the minimum mark of 5 is an entry condition for the Exam.

Date Signature of course coordinator

Signature of seminar coordinator

06.04.2018 Associate professor PhD Radu Mihaiescu Associate professor PhD Radu Mihaiescu

Signature of the head of department

Associate professor PhD Radu Mihaiescu

Date of approval