SYLLABUS

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca				
1.2 Faculty	Faculty of Environmental Science and Engineering				
1.3 Department	Department of Environmental Analysis and Engineering				
1.4 Field of study	Environmental Engineering				
1.5 Study cycle	Master				
1.6 Study programme /	Sustainable Development and Environmental Management				
Qualification					
1.6 Study programme /					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline		Modeling and simulation of chemical accidents			
2.2 Course coor	rdin	ator		Lect. Dr. Eng. Zoltán Török			
2.3 Seminar coordinator Lect. Dr. Eng. Zoltán Török							
2.4. Year of	1	2.5	2	2.6. Type of	С	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	2	Of which: 3.2	course	1	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	28	Of which: 3.5 d	course	14	3.6 seminar/laboratory	14
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes					35	
Additional documentation (in libraries, on electronic platforms, field documentation)					35	
Preparation for seminars/labs, homework, papers, portfolios and essays					98	
Tutorship					-	
Evaluations					4	
Other activities:					-	
3.7 Total individual study hours 168						
3.8 Total hours per semester 196						

4

4. Prerequisites (if necessary)	

3.9 Number of ECTS credits

In Free equipites (II II			
4.1. curriculum	Basics of environmental engineering: chemical processes, transport and transfer		
	processes, risk assessment		
	Mathematics and chemistry		
4.2. competencies	Technical: use of computer software, modeling and simulation tools		

5. Conditions (if necessary)

5.1. for the course	Necessity of digital projector and computer (laptop)
5.2. for the seminar /lab	Laboratory with computers and specific software;
activities	

Professional competencies	 Understanding the concepts and models, to work with them for simulation of chemical accidents. Learning to develop specific environmental studies: impact and risk assessment studies for process industries.
Transversal competencies	 Ability to conduct literature research in all existing formats; Knowledge of using specific computer software in the field of environmental studies; Acquiring knowledge of developing a research project; Teamwork;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• study and knowledge of models, techniques and procedures for chemical accident modelling, quantitative environmental risk and impact assessment;
7.2 Specific objective of the discipline	 knowledge of mathematical models used for the estimation of physical effects of chemical accidents and release of dangerous substances knowledge of using specific software in the field of environmental risk and impact assessment knowledge of developing an environmental risk or impact study

8. Content

8.1 Course (structured in 2 hours long courses)	Teaching methods	Remarks
 Backgrounds and scope of mathematical modelling. Conditions under which chemical accident models can be applied. Historical background of chemical accident modelling. Modelling theory. The conceptual model. The quantitative model. Model evaluation. Model application. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Release and evaporation models: gas, liquefied gas and liquid releases; pool evaporation models. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Gas Dispersion modeling: dense gas dispersion models; passive dispersion models. Gaussian models versus Lagrangian models; 	 Interactive exposure Explanation Conversation Didactical demonstration 	
• Modeling of fires: Poolfire models, flash fire models, jetfire models	Interactive exposureExplanationConversation	

	Didactical demonstration
 Modeling of BLEVE phenomena and vessel explosion models; Modeling of explosions: vapour cloud explosion models; dust explosion models; 	 Interactive exposure Explanation Conversation Didactical demonstration
• Modeling of physical effects of chemical accidents. Model structure and results obtained.	 Interactive exposure Explanation Conversation Didactical demonstration
Consequence modeling: PROBIT functions. Individual and Social Risk estimation.	 Interactive exposure Explanation Conversation Didactical demonstration

Bibliography

1. Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.

2. P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, Hague, 1999.

3. Frank P. Lees: Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Second edition, United Kingdom, 1996.

4. A. J. Jakeman, A.A. Voinov, A.E. Rizzoli, S.H. Chen (Eds.): Environmental Modelling, Software And Decision Support. State of the Art and new perspectives. Elsevier, 2008.

5. G.E. DeVaull, J.A. King, R. J. Lantzy, D. J. Fontaine (Eds.): Understanding Atmospheric Dispersion of Accidental Releases, AIChE, New York, 1995.

6. ***American Institute of Chemical Engineers (AIChE): *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, 2000.

7. S-E Gryning, F.A. Schiermeier (Eds.): Air pollution modeling and its applications XIV, Kluwer Academic Publishers, New York, 2004.

8. C. Borrego, G. Schayes (Eds.): Air pollution modeling and its applications XV, Kluwer Academic Publishers, New York, 2004.

9. S.R. Hanna, R.E. Britter (Eds.): Wind flow and Vapour Cloud Dispersion at Industrial and Urban Sites, AIChE, New York, 2002.

10. W.E., Grant, T.M., Swannack, Ecological Modeling. A common-sense approach to theory and practice, Blackwell Publishing, 2008.

11. S.E., Jorgensen, G., Bendoricchio, Fundamentals of Ecological Modelling, Third Edition, Elsevier, 2001.

12. F., Jopp, H., Reuter, B., Breckling, Editors, Modelling Complex Ecological Dynamics, Springer, 2011.

12.1., topp, 11, Reater, D., Dreening, Lattors, 110		
8.2 Seminar / laboratory (structured in 2 hours	Teaching methods	Remarks
long laboratories)		
Presentation of available modeling and simulation	Explanation	
tools: ALOHA, EFFETCS, RISKCURVES and	Conversation	
SEVEX View software. Limitation of software.		
Modeling and simulation of chemical releases and	• Lab assignment	Individual work with
pool evaporation using ALOHA, EFFETCS.	Explanation	simulation software
	Conversation	
Modeling and simulation of gas dispersions using	• Lab assignment	Individual work with
ALOHA, EFFETCS and SEVEX View software.	Explanation	simulation software
	Conversation	
Modeling and simulation of industrial fires using	• Lab assignment	Individual work with
ALOHA, EFFETCS and SEVEX View software.	Explanation	simulation software
	Conversation	

Modeling and simulation of BLEVE phenomena and vessel explosions using ALOHA, EFFETCS and SEVEX View software.	Lab assignmentExplanationConversation	Individual work with simulation software
Modeling and simulation of gas explosions using ALOHA, EFFETCS and SEVEX View software.		
Consequence modeling using EFFECTS software.	Lab assignment	Individual work with
PROBIT calculations. Individual and Social Risk	• Explanation	simulation software
estimation examples.	Conversation	and MS Excel.
Presentation of Individual Project	Conversation	Lab Exam

References

1. Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.

2. P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, Hague, 1999.

3. Frank P. Lees: Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Second edition, United Kingdom, 1996.

4. A. J. Jakeman, A.A. Voinov, A.E. Rizzoli, S.H. Chen (Eds.): Environmental Modelling, Software And Decision Support. State of the Art and new perspectives. Elsevier, 2008.

5. G.E. DeVaull, J.A. King, R. J. Lantzy, D. J. Fontaine (Eds.): Understanding Atmospheric Dispersion of Accidental Releases, AIChE, New York, 1995.

6. ***American Institute of Chemical Engineers (AIChE): *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, 2000.

7. S-E Gryning, F.A. Schiermeier (Eds.): Air pollution modeling and its applications XIV, Kluwer Academic Publishers, New York, 2004.

8. C. Borrego, G. Schayes (Eds.): Air pollution modeling and its applications XV, Kluwer Academic Publishers, New York, 2004.

9. S.R. Hanna, R.E. Britter (Eds.): Wind flow and Vapour Cloud Dispersion at Industrial and Urban Sites, AIChE, New York, 2002.

10. W.E., Grant, T.M., Swannack, Ecological Modeling. A common-sense approach to theory and practice, Blackwell Publishing, 2008.

11. S.E., Jorgensen, G., Bendoricchio, Fundamentals of Ecological Modelling, Third Edition, Elsevier, 2001.

12. F., Jopp, H., Reuter, B., Breckling, Editors, Modelling Complex Ecological Dynamics, Springer, 2011.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The knowledge acquired during the course can be used in the next domains: environment protection, process industries: chemical, pharmaceutical, petrochemical, food industry etc. and academic domains; The graduates of this course can contribute in the development of technological risk studies, a safety reports

or a major industrial accidents prevention policies and to work in consultancy in the field of risk assessment.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	• A theoretical research report on the topic of the Lab Project.	Evaluation of the research report (a written paper of	30%

		about 10 pages and an oral presentation)	
10.5 Seminar/lab activities	• A project developed using the available software	Evaluation of the project (documentation and demonstration)	60%
	• Student activity	Scoring	10%
10.6 Minimum performar	ice standards		

- Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the studied domain, that (s)he is capable of stating this knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.
- Minimum 80% presence at seminar/lab activities.

Date

Signature of course coordinator

Signature of seminar coordinator

11.04.2018

Lect. Dr. Eng. Zoltán Török

Lect. Dr. Eng. Zoltán Török

Date of approval

Signature of the head of department