COMPUTER-AIDED DESIGN FOR ENVIRONMENTAL PROTECTION (SYLLABUS)

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Environmental Analysis and Engineering
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Master
1.6 Study programme / Qualification	Sustainable Development and Environmental Management (DSMM)/ Environmental Engineering / Waste Recovery Engineering (IVD)

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline			Computer aided design applicable in environmental protection				
2.2 Course coord	Durse coordinator Assistant Prof., PhD Manciula Dorin						
2.3 Seminar coo	rdir	ator A	Assistant Prof., PhD Manciula Dorin				
2.4. Year of study	2	2.5 Semester	4	2.6. Type of evaluation	Е	2.7 Type of discipline	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	3.2 Of which: course	2	3.3 seminar/laboratory	3
3.4 Total hours in the curriculum	70	3.5 Of which: course	28	3.6 seminar/laboratory	42
Time all otment:					hours
Learning using manual, course support, bibliography, course notes					50
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					
Evaluations					
Other activities: visits, workshops, and other academic activities					2
3.7 Total individual study hours 112					
3.8 Total hours per semester 182					

7

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Basics of environmental engineering: ecological processes, transport and transfer processes, applied mathematics in environmental engineering, descriptive geometry and computer assisted drawing
4.2. competencies	Technical: use of computer software

5.Conditions (if necessary)

5.1. for the course	Necessity of digital projector and computer (laptop)
5.2.for the seminar /lab activities	Laboratory with computers and specific software

6. Specific competencies acquired

Professional competencies	 Acquire communication skills to interact effectively in a professional manner on issues related to technical design; development of teamwork abilities, to think relationally and find concrete ways to approach and solve graphic problems; critical analysis, application of models, theories, fundamental engineering concepts related to specific issues concerning environmental protection; explanation and interpretation of properties, concepts, approaches, models and specific notions relating to technical design in connection with fundamental sciences and engineering; presentation of drawings, sketches and engineering projects with specific to engineering areas recognition and description of concepts, theories, methods and graphical models applied in engineering sciences.
Transversal competencies	 work successfully in a team by performing practical tasks; develop technical and communication skills; ability to conduct literature research in all existing formats; knowledge of using specific computer software in the field of environmental studies; acquiring knowledge of developing a research project;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 to provide general knowledge related to concepts and methods applied in the area of computer design; acquisition of theoretical knowledge on principles, general concepts an basic rules of technical graphic design for engineers; introduction of basic elements specific to computer aided design documentation necessary for the generating technical drawings.
7.2 Specific objective of the discipline	 development of technical skills to achieve graphic representations at different scales; applying the concepts related the work techniques used in descriptive geometry and technical graphic design.

8.Content

8.1 Course	Teaching methods	Remarks
C1. Introduction to computer graphics.	• Interactive exposure	-
Backgrounds, opportunity and motivation of	Explanation	
ecological and engineering design. History of	Conversation	
technical graphic design.	 Didactical demonstration 	
C2 Elements of descriptive geometry Notations	Interactive exposure	_
and symbols Projection systems and reference	Explanation	
systems. Modelling theory. Conceptual models.	Conversation	
Graphic examples.	 Didactical demonstration 	
C3. Geometric modeling. Conventions and	• Interactive exposure	-
notations. Graphic examples.	• Explanation	
	Conversation	
	Didactical demonstration	
C4. Curves. Hermite curves. Bezier curves. B-	• Interactive exposure	-
spline curves. Graphic examples.	• Explanation	
	Conversation	
	Didactical demonstration	
C5. Surfaces. Explicit, implicit and parametric	• Interactive exposure	-
equations of surfaces. Points on a surface.	Explanation	
Embedded curves. Graphic examples.	Conversation	
	Didactical demonstration	
C6. Raster scan graphics. Drawing algorithms.	• Interactive exposure	-
Graphic examples.	Explanation	
	Conversation	
	Didactical demonstration	
C7. Clipping. 2D clipping. 3D clipping. Graphic	• Interactive exposure	-
examples.	Explanation	
	Conversation	
	Didactical demonstration	
C8. Visible lines and visible surfaces. Algorithms.	• Interactive exposure	-
Graphic examples.	Explanation	
	Conversation	
	Didactical demonstration	
C9. Rendering. Illumination models. Transparency.	• Interactive exposure	-
Shadows. Textures. Ray tracing. Radiosity. Color.	Explanation	
Graphic examples.	Conversation	
	Didactical demonstration	
C10. The bicubic Hermite surface. Bezier surfaces.	• Interactive exposure	-
B-spline surfaces. Graphic examples.	Explanation	
	Conversation	
	Didactical demonstration	
C11. Solids. Parametric solids. Tricubic solid.	Interactive exposure	-
Curves and surfaces embedded in a solid.	• Explanation	
Controlled deformation solids. Graphic examples.	Conversation	
	Didactical demonstration	
C12. Complex model construction. Topology of	Interactive exposure	-
models. Boolean and boundary models. Graphic	Explanation	
examples.	Conversation	

	Didactical demonstration	
C13. Relational geometric synthesis. Relational	• Interactive exposure	-
model structure. Relational entities. Applications.	Explanation	
Graphic examples.	Conversation	
	Didactical demonstration	
C14. Graphic design software. 2D design. 3D	• Interactive exposure	-
design. Examples.	Explanation	
	Conversation	
	• Didactical demonstration	

Bibliography

- C. Anghel, G. Şimon, Grafică Tehnică Asistată de Calculator, Editura Risoprint, Cluj-Napoca, 2008;
- J. Moncea, Geometrie descriptive și desen tehnic, Vol. I, Editura Didactică și Pedagogică, București,
- 1982;
- Enache, T. Ivănceanu, Geometrie descriptive și desen tehnic, Editura Didactică și Pedagogică,
- București, 1982;
- E. Vasilescu, Desentehnic industrial, Editura Tehnică, București, 1994;
- N. Crisan, Notiuni Fundamentale în Desenul Tehnic Industrial, Vol. I, Editura Risoprint, Cluj-Napoca, 2001.
- CAD Book Course bulletin, Péter Hervay, Richárd Horváth, László Kátai, István Madarász, Budapest University of Technology and Economics Faculty of Mechanical Engineering, 2012;
- Nicos Bilalis, Computer aided design-CAD, Technical University of Crete, 2000;
- Michael E. Mortenson, Geometric modeling, Wiley Computer Publishing, 1996;
- David F. Rogers, Procedural elements for computer graphics, WCB McGraw-Hill, 1985;
- Andrew Mustun, An introduction to computer aided design (CAD), RibbonSoft, GmbH, 2016.
- Seminar / laboratory Teaching methods

8.2 Seminar / laboratory	Teaching methods	Remarks
S1/L1.General presentation of computer graphic	• Lab assignment	Individual work
programs - CAD software and tools. Ecological	• Explanation	
and engineering design concept.	Conversation	
S2/L2.2D and 3D software presentation. General	• Lab assignment	Individual work
data presentation for individual project. Ecological	Explanation	
and technical data and processes analysis.	Conversation	
S3/L3.Introduction to CAD 2D software.	• Lab assignment	Individual work
Description and using of 2D software. Drawing	Explanation	withsoftware
elements, tools and procedures.	Conversation	
S4/L4. Making sketches and profiles with graphic	• Lab assignment	Individual work with
program Solid Edge. Part 1	• Explanation	software
	Conversation	
S5/L5. Making sketches and profiles with graphic	• Lab assignment	Individual work with
program Solid Edge. Part 2	Explanation	software
	Conversation	
S6/L6. Making sketches and profiles with graphic	• Lab assignment	Individual work with
program Solid Edge. Part 3	Explanation	software
	Conversation	
S7/L7. Introduction to 3D software. Description	• Lab assignment	Individual work with
and using of 3D software. Drawing elements, tools	Explanation	software
and procedures.	Conversation	
S8/L8. Making sketches and profiles with graphic	Lab assignment	Individual work with
program G-Sketchup. Part 1	Explanation	simulation software

	Conversation	
S9/L9. Making sketches and profiles with graphic	• Lab assignment	Individual work with
program G-Sketchup. Part 2	Explanation	software
	Conversation	
S10/L10. Making sketches and profiles with	• Lab assignment	Individual work with
graphic program G-Sketchup. Part 3	Explanation	software
	Conversation	
S11/L11. Making sketches and profiles with	• Lab assignment	Individual work with
graphic program Lumion. Part 1	• Explanation	software
	Conversation	
S12/L12. Making sketches and profiles with	• Lab assignment	Individual work with
graphic program Lumion. Part 2	Explanation	software
	Conversation	
S13/L13. Making sketches and profiles with	Lab assignment	Individual work with
graphic program Lumion. Part 3	Explanation	software
	Conversation	
S14/L14.	Conversation	Lab Exam
Presentation of individual project		

Bibliography

- C. Anghel, G. Şimon, GraficăTehnicăAsistată de Calculator, EdituraRisoprint, Cluj-Napoca, 2008;
- J. Moncea, Geometriedescriptivășidesentehnic, Vol. I, EdituraDidacticășiPedagogică, București,
- 1982;
- Enache, T. Ivănceanu, Geometriedescriptivășidesentehnic, EdituraDidacticășiPedagogică,
- București, 1982;
- E. Vasilescu, Desentehnic industrial, EdituraTehnică, București, 1994;
- N. Crisan, NotiuniFundamentaleînDesenulTehnic Industrial, Vol. I, EdituraRisoprint, Cluj-Napoca, 2001;
- CAD Book Course bulletin, PéterHervay, RichárdHorváth, LászlóKátai, IstvánMadarász, Budapest University of Technology and Economics Faculty of Mechanical Engineering, 2012;
- NicosBilalis, Computer aided design-CAD, Technical University of Crete, 2000;
- Michael E. Mortenson, Geometric modeling, Wiley Computer Publishing, 1996;
- David F. Rogers, Procedural elements for computer graphics, WCB McGraw-Hill, 1985;
- Andrew Mustun, An introduction to computer aided design (CAD), RibbonSoft, GmbH, 2016.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course and practical work shows calculation examples, case studies, problems, exercises and examples to familiarize students with elements of technical and computer-aided graphics.

10.Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade(%)
10.4 Course	A theoretical research report related to the topic of the lab project	Examination. Evaluation of the research report (a written paper and an oral presentation)	30%

10.5 Seminar/lab	A project developed using	Evaluation of the project (documentation and	60%
activities	the available software	demonstration) and the 3D graphic design.	
		In order to assess the project, the following	
		elements will be considered: respecting the	
		deadline; project presentation; project aspect,	
		content and references.	
	Student activity and active	Scoring. Participation in discussions,	10%
	participation in seminars	debates, preparation of the tasks. Students	
		are rewarded for bringing up more	
		challenging ideas.	
10.6			

10.6

• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the studied domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

- Minimum 80 % presence at seminar/lab activities.
- Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Signature of course and seminar coordinator:

Lect. Manciula Dorin, PhD Eng.

Date of approval:

14.04.2021

Male.

Signature of the head of department