SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Department of Environmental Analysis and Engineering
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme /	Environmental Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the	disci	pline Altern	Alternative energies				
2.2 Course coord	linat	or	Dr. Giuseppe Etiope				
2.3 Seminar coordinator			Г	Dr. Giuseppe Etiope			
2.4 Year of study	IV	2.5 Semester	emester 7 2.6. Type of Exam. 2.7 Type of Manda			Mandatory	
				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	3.2 Of which: course	2	3.3	2
				Seminar/laborator	
				у	
3.4 Total hours in the curriculum	56	3.5 Of which: course	28	3.6	28
				Seminar/Laborato	
				ry	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					12
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					12
Tutorship					4
Evaluations					2
Other activities:					
3.7 Total individual study hours		12			

3.7 Total individual study hours	42
3.8 Total hours per semester	98
3.9 Number of ECTS credits	4

4. Preconditions (if necessary)

4.1 Curriculum	Physics, Mathematics, High School Chemistry		
4.2 Competencies	•	Corresponding competencies in Physics, Mathematics, Chemistry	
		High School	

5. Conditions (if necessary)

5.1. for the course	 No conditions
---------------------	-----------------------------------

5.2. for the seminar /lab	Physics Laboratory
activities	

6. Specific competencies acquired

	Knowledge of the current energy situation
al ies	Knowledge of the types of renewable energies
ssion	Knowledge of the advantages/disadvantages of types of renewable energies
Professional competencies	Knowledge of energy-saving methods
	Developing the ability to use the acquired knowledge in practical applications and the
_ sa	ability to solve specific problems
rsal	Mathematics, science and technology skills
vel ete	Teamwork skills
Transversal competencies	Development of critical reasoning, based on performing and interpreting quantitative
Tr coi	analyses

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Presentation of the state of energy resources at present, the awareness of the need for alternative energy sources; presentation of the types of renewable energies, with the advantages and disadvantages of each		
7.2 Specific objectives	 The standard energy source of today's human society is presented: Electricity Solar energy: photovoltaic and thermal panels Wind Energy: Wind Turbines Water energy: hydro, sea currents, waves, and tides, geothermal Biomass energy: biodiesel, bioethanol, biogas Fuel cells and hydrogen Nuclear energy Global warming, Kyoto Protocol 		

8. Content

8.1 Course	Teaching methods	Remarks
1. What is renewable energy? [2 hours]	Interactive lecture	
	Exposure	
Basic concepts : standard energy = electricity, renewable	Problematization	
energy, industrial revolution, CO2	Exercises and problem	
	solving	
Bibliography: [1], [2]	Presentation of case	
	studies	
2. The Sun - the main source of energy of mankind [2	Heuristic conversation	
hours]	Explanation	
	Modeling	

Basic concepts: physical characteristics of the sun, proton-	
proton reaction, electromagnetic waves, solar constant,	
solar spectrum	
Bibliography: [1], [2]	
Dibliogi aprily. [1], [2]	
3. Solar energy capture: photovoltaic cell [2 hours]	
Basic concepts: p-n junction, fill factor, no-load voltage,	
short-circuit current, efficiency	
•	
Bibliography: [1], [2]	
4. Applications of photovoltaic solar cells [2 hours]	
Basic concepts: characteristics of sunlight, air factor, on-	
grid, off-grid mounting	
grid, orr-grid mounting	
Bibliography:[1], [2]	
5. High Power Solar Power Plants [2 hours]	
Basic concepts: parabolic mirrors, tower power, Stirling	
engine	
Bibliography: [1], [2]	
6. Wind energy [2 hours]	
o. wind energy [2 nodis]	
Basic concepts: wind categories, wind turbine, Stall effect,	
Pitch, wind farms	
Dibliography [1]	
Bibliography. [1]	
7. Water Energy [2 hours]	
Basic concepts: hydro-energy, wave energy, marine	
currents	
Bibliography. [1]	
8. Geothermal energy [2 hours].	
Basic concepts: geothermal energy extraction engines,	
and use of geothermal energy [1].	
9. Heat pumps; Recovery of heat energy from sewerage [2 hours].	
Basic concepts: heat pump [1]	
10. Biomass [2hrs]	
Basic concepts : biodiesel, bioethanol, biogas [1], [2]	
11. Fuel cells, hydrogen [2 hours]	
Basic concepts: the principle of operation of the fuel cell,	
applications [7]	
12. Nuclear energy [2 hours]	
Basic concepts: fission, nuclear fusion [1],[2]	
13. Energy reserves, consumption, alternatives [2 hours]	
Basic concepts: peak oil, peak gas, peak coal [1]	
Dusic concepts. peak on, peak gas, peak com [1]	

14 Global warming, Kyoto Protocol, renewable energies [2 hours] [1] Bibliography 1. Baican R., Renewable Energies, Grinta Publishing House, 2010, Cluj-Napoca 2. Letcher T.M., Future Energy, Elsevier, 2007 Teaching methods Remarks 8.2 Seminar / laboratory 1. Project no.1 – Estimating the monthly household electricity consumption for a house [2 hours] 2. Project no.2 – Estimating the potential of solar radiation on the territory of Romania [2 hours] 3. Project no. 3-Design of a solar power plant with photovoltaic modules [4 hours] 4. Project no. 4- Calculation of the efficiency of a heat pump [2 hours] 6., 7. Construction and characterization of a microbial combustion cell [4 hours] 8., 9, 10. Determination of the technical characteristics of a photovoltaic panel [6 hours] 11, 12. Determination of the operating parameters of a parabolic mirror heating system [4 hours] 13. Stirling Engine Study [2 hours] 14. Fuel cell study [2 hours]

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations, and representative employers within the field of the program

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the final grade
10.4 Course	Correctness of the answer	Oral exam	60%
10.5 Seminar/laboratory	Data collection and correct interpretation Synthesis capacity	Grading projects and lab work	40%

10.6 Minimum performance standards

• The student should know the theoretical foundation of the phenomena, to operate with specific measuring equipment

Date of completion Signature of the course coordinator

Signature of the seminar coordinator

06 12 2024

Dr. Giuseppe Etiope

Dr. Giuseppe Etiope

Date of approval in the department

Signature of the head of the department