DISCIPLINE DESCRIPTION

1. About the program

1.1 Higher education	"BABEŞ-BOLYAI" UNIVERSITY OF CLUJ-NAPOCA
institution	
1.2 Faculty	FACULTY OF ENVIRONMENTAL SCIENCE AND
	ENGINEERING
1.3 Department	ENVIRONMENTAL ANALYSIS AND ENGINEERING
1.4 Field of study	ENVIRONMENTAL ENGINEERING
1.5 Study cycle	BACHELOR
1.6 Study Program /	IM-EN
Qualification	

2. Data about the discipline

2.1 Subject name	APPLIED I	NF	ORMATICS			
2.2 Holder of course activities			CS III PhD. Deaconu Lucia-Timea			
2.3 Holder of seminar activities		CS III PhD. Deaconu Lucia-Timea				
2.4 Year of study I 2.5	Semester I		2.6. Type of	С	2.7 Disciplinary	DC.Obl
			evaluation		regime	

3. Total estimated time (hours per semester of teaching activities)

3.1 Number of hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total curriculum hours	56	Of which: 3.5 course	28	3.6 seminar	28
Time fund distribution:					hours
Study from the textbook, course materials, bibliography and notes					20
Additional documentation in the library, on specialized electronic platforms and in the field				16	
Preparation of seminars/workshops, homework, reports, portfolios and essays				0	
Tutorials				4	
Reviews				2	
Other activities:				-	

3.7 Total individual study hours	42
3.8 Total hours per semester	98
3.9 Number of credits	4

4. Prerequisites (where applicable)

4.1 of curriculum	•
4.2 of skills	•

5. Conditions (where applicable)

5.1 The course	 classroom equipped with video projector
5.2 Seminar	 seminar room with computer for each student

6. Specific skills to be acquired

	• the course is adapted to international methodologies, providing students with the
	opportunity to acquire basic knowledge for analysing and interpreting experimental
	scientific data
Professional skills	 the structure of the course/laboratory provides for the development of computer operating skills using specific software for writing, analysing, processing data (Microsoft Word, Excel) and presenting the results (Microsoft Power Point) acquisition of both theoretical and practical knowledge for the elaboration of scientific work (articles, bachelor's/dissertation thesis, environmental projects)
Pro	work (articles, buchelors, dissertation thesis, environmental projects)
	• understanding of scientific work in the field from the perspective of data processing
	(elements of descriptive statistics) and their representation
	` ' '
	display a positive and responsible attitude towards science
So.	ability to represent, evaluate and interpret experimental data
sal	1 1 111
ver	research skills
transversal competences	application of descriptive statistics concepts, data representation and interpretation

7. Objectives of the subject (from the grid of competences)

7.1 Overall aim of the subject	to know, understand and deepen computer science concepts with specific reference to data representation and processing
7.2 Specific objectives	 developing knowledge and skills in computer operation, using specific programs for data processing and representation developing the ability to analyse experimental data from scientific work developing skills in using scientific databases with environmental applications

8. Contents

8.1 Course	Teaching methods	Remarks
C1. Applied Informatics - objectives and organization	Participative lecture, dialog	
C2. Mastering Basic Excel Operations and Functions for Data Management and Analysis; Basic spreadsheet operations, cell references, and functions; Excel interface, basic formulas, and functions (SUM, AVERAGE, etc.)	Participative lecture, dialog, exposition, demonstration	
C3. Advanced Excel Techniques: Complex Functions, Data Analysis, and Visualization Tools; Complex functions, pivot tables, and data visualization tools; Advanced Excel functions (VLOOKUP, INDEX-MATCH, etc.). Introduction to Pivot Tables, creating charts and graphs for data visualization	Participative lecture, dialog, exposition, demonstration	
C4. Understanding Types of Data, Descriptive Statistics, and Measures of Central Tendency: Analysing Environmental Data Using Mean, Median, and Mode	Participative lecture, dialog	
C5. Exploring Measures of Dispersion (range, variance, standard deviation), Skewness, and Kurtosis: Understanding	Participative lecture, dialog, exposition, demonstration	

Data Spread, Asymmetry, and Distribution Shape in	
Environmental Datasets	
C6. Statistical Distributions: Normal, Log-Normal, and Other	Participative lecture, dialog,
Distributions in Environmental Data	exposition, demonstration
C7. Using Excel for Data Analysis: Applying Statistical	Participative lecture, dialog,
Parameters like mean, median, standard deviation and	exposition
Interpreting Results	CAPOSITION
C8. Time Series Analysis in Excel: Trendlines, Moving	Participative lecture, dialog,
Averages, and Forecasting for Environmental Data	exposition
C9. Excel for Statistical Modelling: Performing Regression,	
Correlation, and Hypothesis Testing; Calculate confidence	Dialogue, presentation
intervals for population parameters; Perform and interpret	Braiogue, presentation
multiple linear regression in Excel.	
C10. Advanced Microsoft Word: Basic functions: text	
formatting, paragraph styles, working with headers, footers,	Participative lecture, dialog,
and page numbers. Managing Long Documents with Styles,	exposition
Templates, and References	
C11. Advanced PowerPoint: Using Interactive Features for	Dialogue, presentation
Effective Data Presentation	C /1
C12. Final Project: Analyzing Data, Writing Reports, and	
Presenting Results with Word, Excel, and PowerPoint	Participative lecture, dialog
C13. Review for written assessment	
C14. Colloquium	Evaluation

Bibliography

Deaconu L.: Applied informatics - course support (electronic format - CD)

Tanvir Mustafy, Md. Tauhid Ur Rahman: Statistics and Data Analysis for Engineers and Scientists, 2023, Springer, ISBN: 9789819946600

David Bourg, Excel Scientific and Engineering Cookbook, 2006, ISBN 0596008791

Sam Green, Excel for Data Analysis: Master Data Cleaning, Analysis, and Visualization Techniques to Make Informed Decisions with Microsoft Excel, 2024, ISBN-13: 979-8346672586

Menke, William, Menke, Joshua. Environmental Data Analysis with MatLab. 2011, Elsevier Science, ISBN: 9780123918864, 0123918863

8.2 Seminar	Teaching methods	Remarks
L1. Initial test of knowledge in using Word processors, Excel	Dialogue, computer	
spreadsheets and Power point	exercise	
L2. Getting Started with Excel: Basic Functions and Data		
Management Techniques; create a spreadsheet, input data, and	Dialog, computer exercise	
perform basic calculations using formulas		
L3. Advanced Excel Skills for Environmental Data		
Visualization and Insights; Create and manipulate Pivot Tables	Dialogue, computer exercise	
to summarize large datasets; Use Excel's charting tools to		
present data visually (bar charts, line charts, etc.).		
L4. Analyzing Environmental Data: Practical Exercises in		
Data Types and Central Tendency; Calculate the mean,	Dialog, computer exercise	
median, and mode using sample environmental data and	8,	
interpret the results.		
L5. Hands-On Analysis of Data Spread and Distribution		
Shapes in Environmental Studies; Use real-world	Dialog, computer exercise	
environmental data to calculate and interpret range, variance,	6,r	
standard deviation		

L6. Identifying and Applying Statistical Distributions in Environmental Datasets; Analyze environmental datasets to check for normal and log-normal distributions using histograms and Q-Q plots; Apply data transformations (e.g., log-transformation) and interpret results	Dialog, computer exercise
L7. Practical Applications of Statistical Analysis in Excel: From Parameters to Insights; Analyze sample datasets, calculate statistical parameters (mean, median, standard deviation). Create visualizations of data distributions.	Dialogue, computer exercise
L8. Exploring Trends in Environmental Data: Time Series Analysis in Excel; Work with time-based data to create trendlines and moving averages	Dialogue, computer exercise
L9. Excel for Environmental Statistics: Regression, Correlation, and Hypothesis Testing; Conduct simple linear regression analysis using Excel. Calculate correlation coefficients and perform hypothesis testing using Excel tools.	Dialogue, computer exercise
L10. Creating and Managing Technical Documents: Advanced Formatting and References in Word; Create a basic document with text, headings, lists, and images; format paragraphs, insert tables, and manage document layout; section breaks, footnotes, and insert a table of contents	Dialogue, computer exercise
L11. Designing Interactive Presentations: Advanced PowerPoint Features and Data Integration; Create a short presentation, using a variety of design elements and transitions; Advanced features in PowerPoint, including animations, multimedia, and interactive elements; Creating custom slide layouts and incorporating charts, graphs, and Excel data.	Dialogue, computer exercise
L12. Reviewing Course Concepts: A Seminar for Final	Dialogue, computer
Assessment Preparation	exercise
L13. Integrating Word, Excel, and PowerPoint: Preparing for	Dialogue, computer
the Final Report	exercise
L14. Verification of the knowledge acquired in L1 - L13	Evaluation

Bibliography

Deaconu L. - Applied informatics - seminar documentation (electronic format - CD)

Bryan F.J. Manly, Statistics for Environmental Science and Management, Second Edition, Taylor & Francis Group, LLC, 2009, ISBN-13:978-1-4200-6147-5

John B. Little, Modeling and Data Analysis. An Introduction with Environmental Applications, American Mathematical Society, 2019, ISBN: 9781470448691, 1470448696

Richard Harris, Claire Jarvis, Statistics for Geography and Environmental Science, Taylor & Francis, 2014, ISBN: 9781317904397, 1317904397

9. Corroboration of subject contents with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program

The content is consistent with the curricula of similar centers in the country and abroad. The structure was determined after studying the content of the curricula of the Faculty of Physics (Babeş-Bolyai University), the Faculty of Economics and Business Management (Babeş-Bolyai University), and the Master's program in Bioinformatics and Biostatistics (Iuliu Haţieganu University of Medicine and Pharmacy). Also, the global trend towards e-learning platforms such as Coursera, Udemy, Lynda, etc. has allowed an update of the content, including as video clips containing hints on how to solve the exercises.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Assessment methods	10.3 Weighting in
			the final mark

	course			
	Checking your ability to solve the exercises using the programs covered	Computer assessment	6.0 points*	
10.6 Minimum performance standard				

- Making graphs and simple calculations using spreadsheets
- Making graphs and simple calculations using spreadones.
 Understanding the basics of how to represent quantitative/qualitative data
 - * 1,0 point will be added to the final mark.

Date of completion	Signature of course holder	Signature of seminar holder	
04.12.2024	Deacon-	Deacon-	
Date of departmental approval		Signature of the head of department	
•••••			