SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

2.1 Name of the		Atmosph	Atmospheric remote sensing					
discipline								
2.2 Course coord	2 Course coordinator Assoc. Prof. dr. eng. Nicolae Ajtai							
2.3 Seminar coor	2.3 Seminar coordinator Assoc. Prof. dr. eng. Nicolae Ajtai							
2.4. Year of	IV	2.5 Semester	7	2.6. Type of	C	2.7 Type of	compulsory	
study				evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					0
Evaluations					2
Other activities:					-
		4.5			

3.7 Total individual study hours	42
3.8 Total hours per semester	98
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	Basic knowledge of atmospheric environment
4.2. competencies	-

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Laboratory with computers;
activities	

6. Specific competencies acquired

	 Understanding the concepts, methods and models used in environmental data acquisition and remote sensing;
Professional competencies	Understanding the composition of the atmosphere and its dynamics;
mpete	Understanding radiative transfer through the atmosphere;
ıal co	Understanding basic meteorological aspects;
ession	• Understanding the principles of active and passive remote sensing;
Profe	Learn to use trajectory models for particle dynamics;
	• Learn the basic operation of remote sensing instruments for clouds and aerosol studies;
	 Apply descriptive methodologies according to the type of study design for answering particular research question;
rsal	Learn data processing with specific software;
Transversal competencies	Learn to work in research teams;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	- Presentation and assimilation of the main concepts and methods of active and passive remote sensing of clouds and atmospheric aerosol.
7.2 Specific objective of the discipline	 Acquiring theoretical knowledge regarding the study of the atmosphere through remote sensing. Acquisition of theoretical knowledge regarding the methods of radiative transfer in the atmosphere. Acquiring practical knowledge regarding the sounding of the atmosphere with active and passive remote sensing instruments.

8. Content

8.1 Course	Teaching methods Remarks
1. Remote sensing. Introductory notions.	Interactive exposure
	Explanation
	Oral presentation
2. Radiative transfer in the atmosphere.	Interactive exposure
	Explanation
	Oral presentation
3. The atmosphere. Structure, dynamics, gases and	Interactive exposure
material particles.	Explanation
	Oral presentation
4. Study of atmospheric aerosol and clouds using	Interactive exposure
active and passive remote sensing techniques.	Explanation
	Oral presentation
5. Passive remote sensing - aerosol. Radiometers	Interactive exposure
and solar photometers.	Explanation

	Oral presentation
6. Active remote sensing - aerosol. Elastic	Interactive exposure
backscatter LIDAR systems.	Explanation
·	Oral presentation
7. Active remote sensing. RAMAN multichannel	Interactive exposure
LIDAR systems. Applications in the detection	Explanation
and characterization of aerosols.	Oral presentation
8. Study of clouds by remote sensing. Cloud radar.	Interactive exposure
Ceilometer	Explanation
	Oral presentation
9. Study of clouds by remote sensing. Microwave	Interactive exposure
radiometer. Wind doppler lidar.	Explanation
	Oral presentation
10. Satellite imaging techniques;	Interactive exposure
	Explanation
	Oral presentation
11. Detection and classification of particulate matter	Interactive exposure
at ground level using optical particle counters.	Explanation
	Oral presentation
12. Modeling the dispersion of pollutants in the	Interactive exposure
atmosphere on a small, medium and macro	Explanation
scale. Integration of remote sensing data.	Oral presentation
13. International environmental monitoring	Interactive exposure
networks based on remote sensing.	Explanation
	Oral presentation
14. The RADO concept. Romanian Atmospheric 3D	Interactive exposure
Research Observatory. Development of an	Explanation
advanced platform for the study of the	Oral presentation
atmosphere.	
Ribliography	

Bibliography:

- 1. Jaqueline Lenoble, 1985, Atmospheric Radiative Transfer
- 2. Wallace, J.M., Hobbs, P.V., 2006, *Atmospheric science: an introductory survey -* 2nd edition., ISBN 13: 978-0-12-732951-2
- 3. Ann M Holloway and Richard P Wayne, 2010, *Atmospheric Chemistry*, RSC Publishing, ISBN: 9781847558077
- 4. Fizica mediului atmosfera, D. Ristoiu, Ed. Napoca Star, 2005, 560 pg
- 5. Sabina Stefan, Doina Nicolae, Mihaela Caian, 2008, Secretele aerosolului atmosferic in lumina laserului, Ars Docendi, Bucuresti
- **6.** Oleg Dubovik, Brent Holben, Thomas F. Eck, Alexander Smirnov, Yoram J. Kaufman, Michael D. King, Didier Tanre, and Ilya Slutsker, *Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations*, Journal of the Atmospheric Sciences, 2001, Vol. 59. p. 520
- **7.** Vallis Geoffrey K., 2019, *Essentials of Atmospheric and Oceanic Dynamics*, ISBN: 9781107692794, Cambridge, 366pp.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Optoelectronic techniques for environmental	conversația	
monitoring.		
2. Passive remote sensing. Measurements with the	conversația,	
CIMEL CE 318 sun photometer.	experimantarea	
3. AERONET platform - presentation	experimentul,conversația, învățareaprin descoperire	
4. AERONET platform – analysis and interpretation of directly measured parameters	experimentul, conversa- ția, învățarea prin descoperire	

5. AERONET platform – analysis and interpretation	experimentul,
of indirectly measured parameters.	conversația, învățarea
, I	prin descoperire
6. Active remote sensing. Measurements with the	experimentul, învățarea
CLOP LIDAR system	prin descoperire
7. Measurements with the CLOP LIDAR system	experimentul, învățarea
	prin descoperire
8. Lidar data processing. The SCC model.	experimentul, învățarea
	prin descoperire
9. Aerosol and gas dispersion models;	experimentul, învățarea
	prin descoperire
10. Modeling the dispersion of pollutants at the	experimentul, învățarea
macroscale. HYSPLIT.	prin descoperire
11. Global networks of remote sensing instruments.	învățarea prin
	descoperire; conversație
12. Joint project work.	Team work, experiment;
13. Joint project work.	Team work, experiment;
14. Final project presentation.	
	Individual study
	presentation;

Bibliography:

- 1. Draxler, R.R., Rolph, G.D., (2012), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php), NOAA Air Resources Laboratory, Silver Spring, MD, [accesat în aprilie 2011]
- 2. Dubovik, O., Holben, B.N., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanre, D., Slutsker, I., (2002), *Variability of absorption and optical properties of key aerosol types observed in worldwide locations*, Journal of Atmospheric Science., 59, 590-608
- 3. Dubovik, O., Smirnov, A., Holben, B., (2000), Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) sun and sky radiance measurements. JGR, 105 (D8), 9791-9806
- 4. Mortier, A., Goloub, P., Podvin, T., Deroo, C., Chaikovsky, A., Blarel, L., Tanre, D. Ajtai, N., (2012), Detection and Characterization of Volcanic Ash Plumes over Lille during Eyjafjöll Volcano Eruption, submitted for publication in Atmospheric Physics and Chemistry/Atmospheric Measurement Techniques Special Issue, Observations and modeling of aerosol and cloud properties for climate studies (ACP/AMT Inter-Journal SI), ISSN: 1867-1381

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Analysis of atmospheric processes in order to reduce the impact on the environment;
- Identifying and specifying information related to the best technologies available in the field;
- Use of information on the best technologies for implementation in environmental projects;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Theoretical and practical skills should be demonstrated within a 2 hour colloquim	Coloquium	50%

10.5 Seminar/lab activities	Project presentation	Public presentation	50%		
10.6 Minimum performance standards					
Successful passing of the course is conditioned by the final grade that has to be at least 5, and the two					
individual composig grades should also be at least 5.					
D /	C: , C	1' ' ' ' ' ' '	C ' 1' '		

Date

Signature of course coordinator

Signature of seminar coordinator

07.12.2024

Date of approval

Signature of the head of department