SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

2.1 Name of the discipline			Chemistry I					
2.2 Course coord	linato	or	Assist. Prof. (Lecturer) PhD Roba Carmen					
2.3 Seminar coor	dina	tor	Assist. Prof. (Lecturer) PhD Roba Carmen					
2.4. Year of	Ι	2.5 Semes	ter	1	2.6. Type of	Е	2.7 Type of	Mandatory
study					evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competencies	-

5. Conditions (if necessary)

5.1. for the course	 Normal (classical) conditions of attendance at teaching activities 		
5.2. for the seminar /lab	Mandatory attendance at practical work		
activities	• During the laboratory activities, the students will wear a lab		
	•	The laboratory report will be submitted no later than the week	
		following the actual completion of the work	

6. Specific competencies acquired

	· · · · · · · · · · · · · · · · · · ·
	- Critical analysis of models and theories in the field of fundamental sciences to address
7.0	specific problems of environmental knowledge and protection
<u> </u>	- Application of notions in the field of fundamental and engineering sciences to address specific
	problems of environmental knowledge
Professional competencies	- Explanation and interpretation of properties, concepts, approaches, models and notions related
l of a	to fundamental and engineering sciences
Pr P	- Recognition and description of concepts, theories, methods and elementary models related to
	fundamental and engineering sciences
	- Presentation of projects related to engineering fields
	- Identifying and respecting the norms of ethics and professional deontology, assuming
	responsibilities for the decisions made and the related risks
es	- Identifying roles and responsibilities in a multidisciplinary team and applying effective
nci	communication and work techniques within the team
ete	- Efficient use of information sources and communication resources and assisted professional
l m	training (portals, Internet, specialized software applications, databases, online courses, etc.)
၁၂	both in Romanian and in an internationally spoken language
rsa	- Description, analysis and use of concepts and theories from fundamental scientific fields
sve	(mathematics, physics, chemistry) and from the field of engineering sciences
Transversal competencies	- Description, analysis and use of concepts and theories from the economic-managerial field
T	applied to the environmental field

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of	Mastering basic chemical principles to understand the behavior of
the discipline	chemical compounds in environmental pollution
7.2 Specific objective of	Knowing the structure and composition of inorganic and organic
the discipline	substances and the main chemical reactions.

8. Content

8.1. Course	Teaching methods	Remarks
8.1.1. Fundamentals of chemistry: the structure of the atom	lecture, explanation,	
	conversation	
8.1.2. Fundamental notions of chemistry: chemical and physical	lecture, explanation,	
bonds; states of matter	conversation	
8.1.3. Applications of the laws of weight in chemistry:	lecture, explanation,	
determining the coefficients of chemical reactions, determining	conversation	
chemical formulas, calculations with chemical equivalents,		
purity and chemical yield		
8.1.4. Multi-component systems (mixtures): without	lecture, explanation,	
chemical interactions (gaseous, liquid or solid mixtures) or	conversation	
with chemical interactions		
8.1.5. Chemical equilibrium: in homogeneous or	lecture, explanation,	
heterogeneous systems	conversation	
8.1.6. Electrochemistry: redox reactions and the laws of	lecture, explanation,	
electrolysis	conversation	
8.1.7. Classes of inorganic compounds: oxides, acids,	lecture, explanation,	
bases and salts. Their role in chemical pollution of the	conversation	
environment		
8.1.8. Classes of inorganic compounds: electrolytes,	lecture, explanation,	
ionization of water, pH, types of reactions	conversation,	
8.1.9. Introduction to organic chemistry: the C atom, bonds	lecture, explanation,	
between C atoms, saturated, unsaturated and aromatic	conversation	
hydrocarbons. Their role in chemical pollution of the		
environment.		

8.1.10. Classes of organic compounds with simple	lecture, explanation,	
functions: alcohols, aldehydes, ketones, ethers, phenols,	conversation,	
carboxylic acids, esters. Their role in chemical pollution of		
the environment		
8.1.11. Classes of organic compounds with simple	lecture, explanation,	
functions: halogens, nitro and amino derivatives. Their role	conversation	
in chemical pollution of the environment		
8.1.12. Introduction to biochemistry: carbohydrates, lipids	lecture, explanation,	
and proteins	conversation	
8.1.13. Introduction to biochemistry: nucleic acids,	lecture, explanation,	
enzymes and vitamins	conversation	
8.1.14. Recap: chemical compounds with negative impact	lecture, explanation,	
on environmental pollution	conversation	

Bibliography:

- 1. Course support
- 2. Delia Maria Gligor, Cristina Roşu, Fundamental elements of environmental chemistry, Galaxia Gutenberg Publishing House, Cluj-Napoca, 2012.
- 3. Mihaela Ligia Ungureșan, Delia Maria Gligor, General chemistry, Galaxia Gutenberg Publishing House, Cluj-Napoca, 2012.
- 4. Delia Maria Gligor, Mihaela Ligia Ungureşan, Notions of electrochemistry, Galaxia Gutenberg Publishing House, Cluj-Napoca, 2009.
- 5. Mihaela Ligia Ungureșan, Lorentz Jäntschi, Delia Maria Gligor, Educational applications of chemistry on computers, Mediamira Publishing House, Cluj-Napoca, 2004.

8.2 Seminar / laboratory	Teaching methods	Remarks
8.2.1. Safety measurements in the Chemistry laboratory	experiment, conversation, learning through discovery	2h
8.2.2. Preparation of a percentage aqueous solution of CuSO ₄	experiment, conversation, learning through discovery	4h
8.2.3. Preparation of an aqueous solution of concentration c2 from a solution of concentration c1	experiment, conversation, learning through discovery	4h
8.2.4. Preparation and determination of the factor of a 0.1 M NaOH aqueous solution; preparation of a 0.02 M NaOH solution from a 0.1 M NaOH solution	experiment, conversation, learning through discovery	4h
8.2.5. Decanting, filtration, extraction	experiment, conversation, learning through discovery	4h
8.2.6. Distillation, crystallization, recrystallization, sublimation	experiment, conversation, learning through discovery	4h
8.2.7. Reaction velocity	experiment, conversation, learning through discovery	4h
8.2.8. Laboratory colloquium.	experiment, conversation, learning through discovery	2h

Bibliography:

- 1. Laboratory reports.
- 2. Cristina Roşu, Basics of Environmental Chemistry Practical Laboratory Work Guide, Casa Cărții de Știința Publishing House, Cluj-Napoca, 2007.
- 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Critical analysis of models and theories from the field of fundamental sciences to address specific problems of environmental knowledge and protection
- Application of notions from the field of fundamental and engineering sciences to address specific problems of environmental knowledge and protection

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Correctness of answers – correct acquisition and understanding of the issues covered in the course	Written exam - access to the exam is conditional on passing the laboratory colloquium and presenting the laboratory reports corresponding to all practical work	80 %
10.5 Lab activities	The activity carried out in the laboratory – the acquisition and correct understanding of the issues addressed in the laboratory		20 %
10 () ()	Laboratory colloquium	Laboratory colloquium - test - is held in the last week of teaching activity	

10.6 Minimum performance standards

- Grade 5 (five) both in the laboratory test and in the exam according to the scale
- Knowledge of the structure and composition of inorganic and organic substances and of the main chemical reactions

04.12.2024 Assist. Prof. (Lecturer) PhD Roba Carmen Assist. Prof. (Lecturer) PhD Roba Carmer	Date	Signature of course coordinator	Signature of seminar coordinator
	04.12.2024	Assist. Prof. (Lecturer) PhD Roba Carmen	Assist. Prof. (Lecturer) PhD Roba Carmen

Date of approval Signature of the head of department