SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme /	Environmental Engineering
Qualification	

2. Date despre disciplină

2.1 Name of the discipline			C	hemistry 2			
2.2 Course coordinator			C	Conf. Dr.Habil. Beldean-Galea Mihail-Simion			
2.3 Seminar coordinator		C	onf. Dr.Habil. Beldean-	Gale	a Mihail-Simion		
2.4 Year of study	I	2.5 Semester	II	2.6. Type of evaluation	Ex	2.7 Type of discipline	Obl.

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	Total hours in the curriculum 56 Of which: 3.5 course 28 3.6		3.6	28	
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					6
Evaluations					4
Other activities:				0	

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1 curriculum	 Inorganic and organic chemistry courses in middle and high school.
4.2 competencies	 Cognitive skills: possession of basic notions in the fields of inorganic and organic chemistry. Action skills: information and documentation, group work, argumentation and use of information technologies for acquisition + processing of analytical data; carrying out active and critical analyses; operationalization and application of knowledge.

5. Conditions (if necessary)

5.1 for the course	 Video projector, blackboard, white and colored chalk.
5.2 for the seminar /lab	 Environmental chemistry laboratory equipped with water, gas,
activities	niche and common laboratory glassware. Safety glasses, gloves,
	lab coat.

6. Specific competencies acquired

0. Spe	echic co	ompetencies acquired
		• Knowledge of the sources of environmental pollution and the types of pollutants
		that affect the quality of the environment.
l ra	es	• Understanding the main chemical reactions that exist in the environment.
ion	enci	• Understanding the processes of transformation of pollutants in the environment and
ess	et	useful aspects in environmental protection.
Professional	competencies	Understanding the chemical processes that control/affect the distribution and
	٥	transfer of pollutants into environment.
		Understanding the local and regional effects that pollutants emitted into the
		environment can generate.
		• Competencies regarding the understanding of the main toxicological effects that
		pollutants and the processes in which they are involved can affect the health of biota.
		Competencies regarding the understanding of the influence of environmental
sal	cies	conditions on the behavior of chemical species present in the respective
ver	ţen	environment.
Fransversal	ıpeı	• Development of action skills: information and documentation, group work,
Tra	competencies	argumentation and use of information technologies for acquisition + processing of
	_	analytical data.
		• Competencies to reflect – individually and collectively – on various issues, topics,
		problems.

7. Objectives of the discipline (outcome of the acquired competencies)

7. Objectives of the disciplin	teome of the acquirea con	peteriores)
7.1 General objective of the	Acquisition of theoretical	and practical concepts related to the main
discipline	chemical processes that c	ontrol/affect the distribution and transfer of
	pollutants in the environm	nent.
7.2 Specific objective of	Knowledge of the source	es of environmental pollution, the types of
the discipline	pollutants as well as the	processes and reactions in which they are
	involved.	
	Description of the main p	processes of pollutants transformation in the
	environment, correlated	with useful aspects in environmental
	protection.	
	Description of the local a	nd regional effects that pollutants emitted
	into the environment can	generate.

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
1. Definitions: contamination and chemical pollution, qualitative and quantitative components of the environment. Basic properties of organic and inorganic pollutants.	Interactive Lecture	Attendance at the course is optional, but recommended.
2. Chemistry of the atmosphere. Classification of air pollutants. Primary and secondary air pollutants. Scheme of formation of secondary pollutants.	Exposition	Attendance at practical activities and seminars is
3. Chemical processes in the atmosphere. Photolysis, radical, oxidation and acid-base reactions. Transport and transfer of pollutants in the atmosphere.	Problem-Based Learning	mandatory. The number of absences accepted in special
4. Inorganic air pollutants. Organic air pollutants. Methane and non-methane compounds. Air quality index.	Problematization	situations is a maximum of 20%
5. Effects of air pollution. Acid rain. Chemical and photochemical smog. Formation of tropospheric ozone.		of the total number of hours.
 Depletion of the ozone layer. Climate changes. 6. Chemistry of the hydrosphere. Chemical composition of water. General water quality parameters. Hydrogen ion indicators; pH and salt hydrolysis, acidity, alkalinity, redox potential. 	Exercises and Problem Solving Case Study	Students who are absent from the seminar / laboratory cannot appear for the
7. General water quality parameters: indicators of common ions (total dissolved solids, conductivity, hardness, salinity); indicators of the oxygen (DO, COD-Cr, COD-Mn, BOD5, TOC)	Presentation Heuristic Conversation	exam. The individual project is handed to the course instructor before
8. Inorganic water pollutants. Heavy metals. Nitrogen compounds. Phosphorus compounds.		the exam. Plagiarism
9. Organic water pollutants. Persistent organic pollutants. PAH, Dioxins, PCB, THM, Pesticides.	Explanation	involves the cancellation of the
10. Chemical and biochemical processes in the hydrosphere. Transport and transfer of pollutants in aquatic environments.	Modeling	work developed by the student. Cases of exam
11. Effects of water pollution. Eutrophication. Hypoxia. Ocean acidification. Water quality index		fraud involve: automatic
12. Soil chemistry. Chemical and biochemical processes in soil. Soil pollutants.		exclusion from the exam, awarding a
13. Humic substances. Biodegradation, bioaccumulation and biomagnification of pollutants.		grade of 1 and the proposal to expel the student in
14. Biogeochemical cycles.		question.
Rihliography.		

Bibliography:

- 1. Haiduc Iovanca; Boboş L. "*Chimia mediului şi poluanţii chimici"*, Editura Fundaţiei pentru Studii Europene (EFES), Cluj-Napoca, 2005.
- 2. Lupea A. X. et al.. *Fundamente de chimia mediului*, Editura Didactică și Pedagogică, București, 2008.
- 3. Manahan S.E., "Environmental Chemistry Eight Edition", CRC Press, USA, 2004.
- 4. Ibanez J.G., *Environmental Chemistry. Fundamentals*, eISBN-13:978-0-387-31435-8, 2007 Springer Science

5. Beldean-Galea M.S. – Chimia mediului – suport curs, seminarii și lucrări practice - https://enviro.ubbcluj.ro/wp-content/uploads/2017/06/Suport-Curs-CHIMIA Mediului.pdf

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Labor protection rules in chemistry laboratories. Presentation of laboratory glassware and how to handle it.	Conversation	Seminar
Basic properties of chemical pollutants. Oxidation, Reduction, Neutralization, Precipitation, Complexation	Demonstrative experiment	Laboratory
3. Primary pollutants. Secondary pollutants. Instrumental determination of CO, NO _x , SO ₂ , O ₃ . Calculation of the air	Demonstrative experiment	Laboratory
quality index (AQI) 4. CO ₂ cycle. Study of the diurnal variation of CO ₂ .	Demonstrative experiment	Laboratory
5. Global effects of air pollution	Conversation	Seminar
6. Chemical processes in water. Hydrolysis of salts. Determination of pH, acidity and alkalinity of water.	Demonstrative experiment	Laboratory
7. Chemical composition of water. Identification of anions	Demonstrative experiment	Laboratory
8. Chemical composition of water. Identification of cations	Demonstrative experiment	Laboratory
9. Water quality. Indicators of common ions. Determination of conductivity, total dissolved solids, hardness, salinity	Demonstrative experiment	Laboratory
10. Water quality. Oxygen regime indicators. Dissolved oxygen determination. COD-Mn determination.	Demonstrative experiment	Laboratory
11. Biogenic indicators. Hypoxia. Eutrophication. Water quality index	Conversation	Seminar
12. Chemical and biochemical processes in soil	Conversation	Seminar
13. Analysis of soil samples. Determination of sulfates.	Demonstrative experiment	Laboratory
14. Laboratory colloquium.		Writen
D'11' 1		examination

Bibliography:

- 1. Mănescu S. et al.. "*Chimia sanitară a mediului*", Editura Medicală, București, 1978.
- 2. Roşu C. "Bazele chimiei mediului: Îndrumător de lucrări practice de laborator", Editura Casa Cărții de Știință, Cluj-Napoca, 2007.
- 3. Beldean-Galea M.S. "*Analiza probelor de mediu. Teorie și aplicații practice*" Ed. Casa Cărții de Știință, Cluj-Napoca, 2016

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of the discipline is in agreement with the expectations of the representatives of the epistemic community, professional associations and representative employers in the field of Environmental Science, as it presents a series of concepts related to pollution with various inorganic and organic pollutants, their behavior in various environmental factors, as well as a series of ecotoxicological aspects (adverse effects of chemical pollutants on terrestrial ecosystems). For this purpose, both simple terms are used (necessary as a starting point and from a terminological point of view), as well as somewhat more advanced mathematical reasoning and models (useful for deepening and understanding the details).
- The course presents several calculation examples and exercises with the aim of familiarizing the audience with a series of quantitative assessments and with the order of magnitude of the exchanges involved, particularly necessary for a good training in the field of environmental science. For increased accessibility, numerous figures, tables and images are used, which facilitate a good understanding of the impact of chemical pollutants on various environmental factors.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.1 Course	Assessment of theoretical knowledge acquired	Exam	60%
	Course activity	Correctness of answers given to the lecturer's questions	5%
10.2 Seminar/lab activities	Seminar/laboratory activity	Quality of answers to questions and experimental results	15%
	Assessment of knowledge acquired	Laboratory colloquium	20
10.3 Minimum perform	mance standards		

Minimum grade 6 in Seminar/Lab
Minimum grade 5 in Course.

Date	Signature of course coordinator	Signature of seminar coordinator
04.12.2024	Bi	Bis
Date of approval	Sign	nature of the head of department