SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Department of Environmental Analysis and Engineering
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme /	Environmental Engineering in English
Qualification	

2. Information regarding the discipline

2.1 Name of the		Chemistry III					
discipline							
2.2 Course coordina	2.2 Course coordinator Assist. Prof. Dr. Roba Carmen						
2.3 Seminar coordinator Assist. Prof. Dr. Roba Carmen							
2.4 Year of study II 2.5 Sem. 3		3	2.6. Type of	С	2.7 Type of	DF	
				assessment		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 Seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 Seminar/Laboratory	28	
Time allotment:						
					urs	
Learning using manual, course support, bibliography, course notes					26	
Additional documentation (in libraries, on electronic platforms, field documentation)					20	
Preparation for seminars/labs, homework, papers, portfolios and essays					20	
Tutorship						
Evaluations					4	
Other activities:						

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of credits	5

4. Prerequisites (if necessary)

4.1 Curriculum	 Not the case
4.2 Competences	 Not the case

5. Conditions (where applicable)

5.1. for the course	Normal (classic) conditions of attendance at teaching activities
5.2. for the seminar /lab	 Mandatory attendance during practical activities
activities	 Students will wear a robe in the laboratory
	• The delivery of the laboratory report will be made no later than
	the week following the actual development of the work

6. Specific competencies acquired

. Sp	ecific	competencies acquired
	Professional competencies	 Applying basic technical and technological knowledge in defining and explaining concepts specific to engineering and environmental protection Description and application of concepts, theories, and practical/technological/engineering methods for determining the state of environmental quality Qualitative and quantitative evaluation of natural phenomena and anthropogenic activities on the quality of environmental factors Explaining and interpreting basic concepts, methods, and models in environmental engineering issues Identification of the best technical and technological solutions for the implementation of professional engineering and environmental protection projects
	Transversal competencies	 Identifying and complying with the rules of ethics and professional deontology, assuming responsibility for the decisions taken and the related risks Identifying roles and responsibilities in a multidisciplinary team and applying relationship techniques and effective work within the team Efficient use of information sources and resources for communication and assisted professional training (portals, Internet, specialized software applications, databases, online courses, etc.) both in Romanian and in an international language Description, analysis, and use of concepts and theories in the fundamental scientific fields (mathematics, physics, chemistry) and in the field of engineering sciences Description, analysis and use of concepts and theories in the economic-managerial field applied in the field of environment

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective	Knowledge and understanding of the important role of green					
of the discipline	chemistry and engineering in sustainable development and the					
	achievement of a sustainable human society					
7.2 Specific objectives	• Understanding the concept of green chemistry: environmentally					
	friendly chemistry, i.e. the design, creation, and application of chemical					
	products and processes to reduce/eliminate the use and generation of					
	hazardous substances.					
	• understanding the content of green chemistry (environmentally					
	benign syntheses, pharmaceuticals, green solvents, and bio-based					
	processes) and comparing it with the current state of the environment					
	and the level of hazardous substances present in it					

8. Contents

8.1 Course	Teaching methods	Remarks
8.1.1. Description of the current state and potential	lecture, explanation,	2 hours
of chemical synthesis to use and generate as few	conversation	
hazardous substances as possible		
8.1.2. <i>Principle 1</i> : Prevention of waste formation;	lecture, explanation,	2 hours
Principle 2: Economy of atoms	conversation	
8.1.3. <i>Principle 3</i> : Less hazardous chemical	lecture, explanation,	2 hours
syntheses; Principle 4: Reduce toxicity, achieve	conversation	
safer chemicals		
8.1.4. <i>Principle</i> 5: Safer solvents and auxiliary	lecture, explanation,	2 hours
materials; <i>Principle 6</i> : Reducing energy needs	conversation	
8.1.5. <i>Principle 7:</i> Use of renewable raw materials;	lecture, explanation,	2 hours
Principle 8: Avoid derivatization	conversation	
8.1.6. Principle 9: Use of catalysts; Principle 10:	lecture, explanation,	2 hours
Accident prevention	conversation	
8.1.7. Biomass and biogas as renewable resources	lecture, explanation,	2 hours
	conversation	
8.1.8. Ethanol used as fuel	lecture, explanation,	2 hours
0.1.0 71.11.1	conversation	
8.1.9. Biodiesel	lecture, explanation,	2 hours
	conversation	
8.1.10. Hydrogen, a basic fuel	lecture, explanation,	2 hours
	conversation	
8.1.11. Solar energy	lecture, explanation,	2 hours
0.1.10 W. 1	conversation	2.1
8.1.12. Wind energy resources	lecture, explanation,	2 hours
	conversation	
8.1.13. Energy of the seas and oceans,	lecture, explanation,	2 hours
hydroelectric resources, geothermal energy	conversation	
resources		
8.1.14. Catalysis and Green Chemistry	lecture, explanation,	2 hours
	conversation	

Bibliography

- 1. Course material.
- 2. M.S. Beldean-Galea, I. Haiduc, C.A. Roba, Chimia verde. Principii și aplicabilitate, Presa Universitară Clujeană, 2013.
- 3. F. M. Kerton, Alternative Solvents for Green Chemistry, 2009, în RSC Green Chemistry Book Series, Editori J. H Clark, G. A Kraus.
- 4. I. Haiduc, Chimia verde și poluanții chimici, Editura EFES Cluj-Napoca, 2006.
- 5. E. Lichtfouse, J. Schwarzbauer, D. Robert, *Green Chemistry and Pollutants în Ecosystems*, Springer Veslag, 2005.

8.2 Seminar/Laboratory	Teaching methods	Remarks
8.2.1. Applications of 'green' methods in the	experiment,	4 hours / 2 weeks
treatment of metal ion-containing wastewater by	conversation, learning	
ion exchange	through discovery	
8.2.2. 'Green' method for removing ammonium ions	experiment,	4 hours / 2 weeks
from wastewater using natural materials	conversation, learning	
	through discovery	

8.2.3. Solid-phase extraction - a "green" method of	experiment,	4 hours / 2 weeks
isolating and concentrating azo compounds from	conversation, learning	
water	through discovery	
8.2.4. Determination of 'green' substances using gas	experiment,	4 hours / 2 weeks
chromatography	conversation, learning	
	through discovery	
8.2.5. Atom economy	experiment,	4 hours / 2 weeks
	conversation, learning	
	through discovery	
8.2.6. Environmental factor	experiment,	4 hours / 2 weeks
	conversation, learning	
	through discovery	
8.2.7. Green chemical syntheses	experiment,	4 hours / 2 weeks
	conversation, learning	
	through discovery	

Bibliography

- 1. Laboratory reports.
- 2. M.S. Beldean-Galea, I. Haiduc, C.A. Roba, Chimia verde. Principii și aplicabilitate, Presa Universitară Clujeană, 2013.
- 3. I. Haiduc, Chimia verde și poluanții chimici, Editura EFES Cluj-Napoca, 2006.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Use of appropriate analysis methods to characterize environmental factors
- Introduction of the best available investigation methods in environmental engineering projects

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight of the final
			grade
10.4 Course	Correctness of answers	Written exam - access to	80 %
	 correct acquisition 	the exam is conditioned	
	and understanding of	by the laboratory	
	the issues dealt with in	colloquium and the	
	the course	presentation of	
		laboratory reports	
		corresponding to all	
		practical papers	
10.5 Laboratory	Correctness of answers	Laboratory reports	20 %
-	 correct acquisition 	corresponding to all	
	and understanding of	practical works	
	the aspects addressed in		
	the laboratory		

Quality of the prepared reports	Colloquium – test – is held in the last week of	
	teaching activity	

10.6 Minimum Performance Standard

- Grade 5 (five) both at the laboratory colloquium and at the written colloquium according to the scale
- understanding the concept of green chemistry environmentally friendly chemistry i.e. designing, creating, and applying chemical products and processes to reduce/eliminate the use and generation of hazardous substances.
- understanding the content of green chemistry (environmentally benign syntheses, pharmaceuticals, green solvents, and bio-based processes) and comparing it with the current state of the environment and the level of hazardous substances present in it.

Date of approval	Signature of the course holde	Signature of the seminar holder	
04.12.2024	Lecturer Dr. Roba Carmen	Lecturer Dr. Roba Carmen	
Date of approval in the department		Signature of the department director	