### EARTH SCIENCE INTEGRATION FOR ENERGY AND ENVIRONMENT

### **SYLLABUS**

## 1. Information regarding the programme

| 1. 1 Higher education institution   | Babeş-Bolyai University                          |
|-------------------------------------|--------------------------------------------------|
| 1.2 Faculty                         | Faculty of Environmental Science and Engineering |
| 1.3 Department                      | Environmental Analysis and Engineering           |
| 1.4 Field of study                  | Environmental Engineering                        |
| 1.5 Study cycle                     | Bachelor level                                   |
| 1.6 Study programme / Qualification | Environmental Engineering                        |

### 2. Information regarding the discipline

| 2.1 Name of the di      | scip | line Emergi  | Emerging natural energy and strategic resources |                         |    |                        |     |
|-------------------------|------|--------------|-------------------------------------------------|-------------------------|----|------------------------|-----|
| 2.2 Course coordin      | ator | •            | Pł                                              | nD. Giuseppe ETIOP      | E  |                        |     |
| 2.3 Seminar coordinator |      |              | Pł                                              | nD. Giuseppe ETIOP      | E  |                        |     |
| 2.4 Year of study       | 4    | 2.5 Semester |                                                 | 2.6. Type of evaluation | C. | 2.7 Type of discipline | OPT |

### **3. Total estimated time** (hours/semester of didactic activities)

| 3.1 Hours per week                                                                    | 4  | 3.2 Of which: course | 2  | 3.3 seminar/laborator | 2     |
|---------------------------------------------------------------------------------------|----|----------------------|----|-----------------------|-------|
| 3.4 Total hours in the curriculum                                                     | 56 | 3.5 Of which: course | 28 | 3.6 seminar/laborator | 28    |
| Time allotment:                                                                       |    |                      |    |                       | hours |
| Learning using manual, course support, bibliography, course notes                     |    |                      |    |                       |       |
| Additional documentation (in libraries, on electronic platforms, field documentation) |    |                      |    |                       | 10    |
| Preparation for seminars/labs, homework, papers, portfolios and essays                |    |                      |    |                       | 10    |
| Tutorship                                                                             |    |                      |    |                       | 8     |
| Evaluations                                                                           |    |                      |    |                       | 2     |
| Other activities: visits, workshops, and other academic activities                    |    |                      |    |                       | 2     |

| 3.7 Total individual study hours | 42 |
|----------------------------------|----|
| 3.8 Total hours per semester     | 98 |
| 3.9 Number of ECTS credits       | 4  |

# **4. Prerequisites** (if necessary)

| 4.1 curriculum   | no requirements                                                    |
|------------------|--------------------------------------------------------------------|
| 4.2 competencies | <ul> <li>fundamental knowledge of chemistry and physics</li> </ul> |

# **5. Conditions** (if necessary)

| 5.1 for the course      | • | Class room with a video projector device and whiteboard         |
|-------------------------|---|-----------------------------------------------------------------|
| 5.2 or the seminar /lab | • | Laboratory equipped with water and common laboratory glassware. |
| activities              |   | Instrumental equipment.                                         |

6. Specific competencies acquired

| analyses) |
|-----------|
| resources |
|           |
|           |
| impact    |
| ncepts    |
|           |
|           |
|           |

# **7. Objectives of the discipline** (outcome of the acquired competencies)

| 7.1 General objective of the discipline  | • Integrating geological, chemical and physical processes that can affect the environment and offer energy resource.                                                                                                                                                                                                                                                        |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.2 Specific objective of the discipline | <ul> <li>Understanding geochemical process (solids, liquids and gas) impacting the environment.</li> <li>Understanding geochemical process (solids, liquids and gas) providing conventional and alternative energy and strategic resources.</li> <li>Improving students' capacity to analyze complex systems and to compare various theories based on arguments.</li> </ul> |

## 8. Content

| 8.1 Course (2 hours /week)                                            | Teaching methods     | Remarks                         |
|-----------------------------------------------------------------------|----------------------|---------------------------------|
| 8.1.1. Introduction. Terminology                                      | Lecture              | Attendance at the               |
| 8.1.2. Main geological processes at global scale                      |                      | course is                       |
| 8.1.3. Understanding rocks and minerals                               | Interaction          | optional, but                   |
| 8.1.4. Units of measurement for fluids and conversions                |                      | recommended.                    |
| 8.1.5. Understanding waters in terrestrial systems                    | Exposure             |                                 |
| 8.1.6. Understanding gases in terrestrial systems                     |                      | Attendance at the               |
| 8.1.7. Rock-fluid interaction impacting the environment               | Presentation of case | seminar                         |
| 8.1.8. Rock-fluid interaction providing energy                        | studies              | /laboratory activities          |
| resources                                                             |                      | are MANDATORY;                  |
| 8.1.9. Gas as energy resource: hydrocarbons.                          | Conversation         | max. 20% absences               |
| Implication for the environment                                       |                      | can be accepted.                |
| 8.1.10. Gas as energy resource: H <sub>2</sub> . Implications for the | Explanation          | Ctu danta vulsa barra           |
| environment                                                           |                      | Students who have more than 20% |
| 8.1.11. Gas as strategic resource: He. Implications for               |                      | absences at the                 |
| the environment.                                                      |                      | seminar/laboratory              |
| 8.1.12. Integration of the studied concepts (to better                |                      | cannot participate to           |
| understand the environment)                                           |                      | the exam.                       |
| 8.1.13. Schematic integration – interaction with                      |                      | the exam.                       |
| students. Q&A section                                                 |                      |                                 |
| 8.1.14. Resume of the studied material. Preparation                   |                      |                                 |
| for the exam                                                          |                      |                                 |
|                                                                       |                      |                                 |

### Bibliography:

- **1. Etiope G.,** 2015, *Natural gas Seepage. The earth's hydrocarbon degassing*, Springer, Switzerland, 199 p.
- **2. Hunt J.M.,** 1996, *Petroleum Geochemistry and Geology*, 2<sup>nd</sup> edition, Ed. W.H. Freeman Co., New York
- **3. Marshall C.P., Fairbridge R.W.,** 1999, *Encyclopaedia of Geochemistry*, Kluwer Academic Publisher, 747 p.
- **4. Prost G., Prost B.,** 2020, *The Geology Companion, Essentials for Understanding the Earth*, 1<sup>st</sup> edition, CRC Press, 488 p.

| 8.2. Seminar / laboratory 2 hours/ week                                     | Teaching methods         | Remarks         |
|-----------------------------------------------------------------------------|--------------------------|-----------------|
| 8.2.1. Labor protection rules in laboratories.                              | Conversation             |                 |
| Presentation of the used instruments.                                       |                          | Team work       |
| 8.2.2 Sampling methods for fluids (water and gas).                          | Experiments              |                 |
| Handling of sampling devices.                                               |                          | Individual work |
| 8.2.3 Calibration / verification of instruments using                       | Learning by discovering  |                 |
| standards.                                                                  |                          |                 |
| 8.2.4 Field measurements of CO <sub>2</sub> and CH <sub>4</sub> from air    | Discussions and debates, |                 |
| 8.2.5 Extraction of gases from water and analyses of                        | preparation of tasks     |                 |
| CO <sub>2</sub> , CH <sub>4</sub> and H <sub>2</sub> . Conversion of units. |                          |                 |
| 8.2.6 Extraction of total petroleum hydrocarbons from                       |                          |                 |
| fluids and TPH analyses.                                                    |                          |                 |
| 8.2.7 Field measurements of methane and CO <sub>2</sub> from                |                          |                 |
| soil.                                                                       |                          |                 |
| 8.2.8 Flux measurements of CO <sub>2</sub> and CH <sub>4</sub> (soil-       |                          |                 |
| respiration).                                                               |                          |                 |
| 8.2.9 Rock density determinations.                                          |                          |                 |
| 8.2.10 Statistical interpretation of data.                                  |                          |                 |
| 8.2.11 Data reporting. Calculations and conversions.                        |                          |                 |
| 8.2.12 Errors, uncertainty, LOD, LOQ.                                       |                          |                 |
| 8.2.13 Recovery of one laboratory.                                          |                          |                 |
| 8.2.14 Laboratory examination.                                              |                          |                 |

### Bibliography:

- 1. Etiope G., Laboratory and seminary work sheets, 2025.
- **2. Marshall C.P., Fairbridge R.W.,** 1999, *Encyclopaedia of Geochemistry*, Kluwer Academic Publisher, 747 p.
- **3. De Vivo B., Belkin H., Lima A.,** 2024, *Environmental Geochemistry, Site Characterization, Data Analysis, Case Histories, and Associated Health Issues*, 3<sup>rd</sup> edition, Elsevier.

# 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program.

- The course "Emerging natural energy and strategic resources" enables the graduates to work for National and International Agencies/Companies/Research Institutes for positions involving energy resources exploration and environmental studies.
- Identification of natural energy resources based on surface geochemistry
- Identification and management of soil and water pollution problems

### 10. Evaluation

| Type of activity            | 10.1 Evaluation criteria                                                                                                        | 10.2 Evaluation methods | 10.3      |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|
|                             |                                                                                                                                 |                         | Share in  |
|                             |                                                                                                                                 |                         | the grade |
| 10.4 Course                 | Correctness of answers – correct acquisition and understanding of the issues covered in the course                              | Examination             | 70 %      |
| 10.5 Seminar/Lab activities | Correctness of answers – correct acquisition and understanding of the issues studied and practiced in the seminary / laboratory | Laboratory examination  | 30 %      |

|                     | studied and practiced in the |                                      |         |
|---------------------|------------------------------|--------------------------------------|---------|
|                     | seminary / laboratory        |                                      |         |
|                     |                              |                                      |         |
| 10.6 Minimum perfor | mance standards:             |                                      |         |
| - minimum grade 5   |                              |                                      |         |
|                     |                              |                                      |         |
| Date                |                              | Signature of course and seminar coor | dinator |
| 05.12.2024          |                              | Giuseppe ETIOPE                      |         |
|                     |                              | Inster                               |         |
| Date of approva     | 1                            | Signature of the head of department  |         |
|                     |                              |                                      |         |