COURSE SYLLABUS

1. Program Information

1.1 Higher Education	Babeş-Bolyai University, Cluj-Napoca
Institution	
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Science/Environmental Analysis and Engineering
1.4 Field of Study	Environmental Science/Environmental Engineering
1.5 Study Cycle	Bachelor's Degree
1.6 Study Program /	Environmental Engineering, Environmental Science, Environmental
Qualification	Management and Audit
	Environmental Engineer

2. Course Information

2.1 Course Name	;	Environment Integrated Monitoring					
2.2 Course Instructor		R	Radovici Andrei				
2.3 Seminar Instructor		R	Radovici Andrei				
2.4 Study Year	II	2.5 Semester	4	2.6. Assessment	Exam	2.7 Course Status	Optional
				Type			

3. Total Estimated Time (hours per semester for teaching activities)

3.1 Number of hours per week	4	Of which: 3.2 lecture	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 lecture	28	3.6 seminar/laboratory	28	
Time Allocation:						
					urs	
Study from the textbook, course materials, bibliography, and notes						
Additional research in the library, on specialized electronic platforms, and in the field						
Preparation for seminars/laboratories, assignments, papers, portfolios, and essays						
Tutoring						
Exam					4	
Other:					0	

3.7 Total hours of independent study	42
3.8 Total hours per semester	98
3.9 Credits	4

4. Prerequisites (where applicable)

4.1 Curriculum prerequisites	 Mandatory: Fundamentals of Environmental Engineering; Recommended: Environmental Chemistry; Environmental Physics; Geographic Information Systems (GIS) applied to the environment.
4.2 Skill prerequisites	 Knowledge of basic concepts regarding environmental factors and chemical analytical techniques.

5. Conditions (where applicable)

5.1 for conducting the	 Lecture room with a projector
lecture	
5.2 for conducting the	 Seminar and laboratory room with computers
seminar/laboratory	

6. Specific skills acquired

	<u> </u>
skills	 Mastery of practical skills related to sample collection, conducting in situ measurements, performing various types of laboratory analyses, processing, examining, and interpreting analytical results.
nal sk	• Familiarity with the aggregation and presentation of environmental data for the preparation of environmental reports.
Professional	 Practical skills in organizing the monitoring of processes with a negative impact on the environment,
Pro	 The ability to correctly interpret the obtained results, culminating in forecasts and warnings.
	The ability to propose realistic solutions from a constructive and material perspective.
	Teamwork skills,
Б	Use of information and communication technology,
ers	Problem-solving and decision-making skills,
Transversal skills	 Application of efficient and responsible work strategies, including punctuality, seriousness, and personal accountability.

7. Course Objectives (derived from the competencies acquired)

7.1 General Objective	Students will be familiarized with the concept of integrated environmental
	monitoring, with the practical methods for its implementation, the methods
	of obtaining environmental data, the processing of this information, and the
	selection of environmental indicators for analyzing environmental impacts.
7.2 Specific Objectives	1. Knowledge and Understanding
	Identifying terms, relationships, and processes, and understanding
	connections within integrated environmental monitoring.
	Correct use of specialized terminology in the field of integrated
	environmental monitoring.
	Ability to synthesize and interpret information accurately.
	2. Explanation and Interpretation
	Understanding the need for an integrated approach in environmental
	monitoring and management.
	Making connections between environmental pressures and
	environmental quality.
	Ability to analyze and apply generic models to specific situations.
	3. Practical-Instrumental
	Relating elements that characterize monitoring and management activities.
	Describing states, systems, processes, and phenomena in the environment and identifying their correlations.
	Ability to apply the knowledge gained in the course practically.
	Research skills and creativity in environmental monitoring.
	Ability to design environmental monitoring projects at various
	scales.
	4. Attitudinal
	Engagement in scientific activities related to integrated
	environmental monitoring.
	Ability to collaborate with specialists from other fields.

8. Contents

8.1 Course	Teaching Methods	Observations

Tonic 1. The Monitoring Concent	DDECENTATION, evaluation discussion
Topic 1: The Monitoring Concept.	PRESENTATION: explanation, discussion
Introductory Concepts: Defining the	of the material
Environmental Monitoring System;	TRAINING: interactive discussions
Environmental Quality and Monitoring.	OBSERVATION: case studies, mixed
	methods
Topic 2: Environmental Monitoring	PRESENTATION: explanation, discussion
Systems. General Overview. General	of the material
Structure of an Environmental Monitoring	TRAINING: interactive discussions
System. Integrated Environmental Monitoring	OBSERVATION: case studies, mixed
Internationally. The National Integrated	methods
Environmental Monitoring System in	
Romania.	
Topic 3: Parameters used in Integrated	PRESENTATION: explanation, discussion
Monitoring. Investigation Areas.	of the material
Environmental Components Monitored.	TRAINING: interactive discussions
Working Techniques. Duration and Frequency	OBSERVATION: case studies, mixed
of Observations. Data Processing Methods.	methods
General Structure.	
Topic 4: Air Management and Monitoring.	PRESENTATION: explanation, discussion
Overview. Sources of Atmospheric Pollution.	of the material
Dispersion of Pollutants in the Atmosphere.	TRAINING: interactive discussions
Air Quality Monitoring. European Directives	OBSERVATION: case studies, mixed
on Air Protection.	methods combinate
Topic 5: Water Environment Management	PRESENTATION: explanation, discussion
and Monitoring. Overview. Pollution	of the material
Sources. The New Concept of Integrated	TRAINING: interactive discussions
Water Monitoring. Organization of the Water	OBSERVATION: case studies, mixed
Monitoring Network.	methods
Topic 6: Water Framework Directive.	PRESENTATION: explanation, discussion
River Basin Management Plans.	of the material
	TRAINING: interactive discussions
	OBSERVATION: case studies, mixed
	methods
Topic 7: Soil Quality Monitoring.	PRESENTATION: explanation, discussion
Overview. Soil Pollution. Integrated Soil	of the material
Monitoring. Soil Quality Monitoring in	TRAINING: interactive discussions
Romania. Legislation.	OBSERVATION: case studies, mixed
Troniana. Dogistation.	methods combinate
Topic 8: Noise Monitoring. Overview.	PRESENTATION: explanation, discussion
Noise Pollution. Noise Monitoring.	of the material
Legislation on Noise Pollution.	TRAINING: interactive discussions
Designation on Proise Politation.	OBSERVATION: case studies, mixed
	methods combinate
Topic 9:	PRESENTATION: explanation, discussion
<u>-</u>	of the material
Biological Monitoring and Biomonitoring.	TRAINING: interactive discussions
Overview. Bioindicators. Vegetation	
Monitoring.	OBSERVATION: case studies, mixed
	methods

References

- Artiola, J. F., Pepper, I. L., and Brusseau, M. L., Environmental Monitoring and Characterization, Elsevier Academic Press, San Diego, 2004
- Căluianu, T., Cocirova, S., Măsurarea și controlul poluării atmosferei, Ed Matrixrom București 2004
- Clarke, Robin, The Handbook of Ecological Monitoring, Clarendon Press, Oxford, 1986

- Dumitru, M., Dumitru E., Gament, E., Carstea S., Monitoringul stării de calitate a solurilor din România, Institutul de Cercetări pentru Pedologie și Agrochimie, Ed. G.N.P., București, 2000
- Godeanu, S., Elemente de monitoring ecologic integrat., Ed. Bucura Mond, București, 1997
- Healy, M., Donald L. Wise, Murray Moo-Young (Ed.), Environmental Monitoring and Biodiagnostics of Hazardous Contaminants, Kluwer Academic Publishers, 2001
- Mandravel, Cristina, Rodica Stănescu Dumitru, Metode fizico-chimice aplicate la măsurarea noxelor în mediul profesional, Ed. Academiei Romane, Bucuresti 2003
- Markert B (Ed.), Environmental Sampling for Trace Analysis, Weinheim: VCH, 1994
- Mihăiescu, R., Monitoringul integrat al mediului, Suport de curs, 2012
- Rojanschi, V., Bran, Florina, Diaconu, Gheorghiţa, Protecţia şi ingineria mediului, Ed. Economică, Bucureşti, 2002.
- Spellerberg, F., J., Monitoring Ecological Change, Cambridge University press, 2005
- Varduca A., Sistemul de monitoring integrat al mediului din România, Rev. Mediul Înconjurător, vol. II, nr. 3-4, București. 1991
- Wiersma G. Bruce (ed.), Environmental Monitoring, Boca Raton; London; New York: CRC Press, 2004.
- *** Ministerul Apelor, Pădurilor și Protecției Mediului, Sistemul Național de Monitoring al Mediului. Master Plan, București, 1993

	Medititi. Master Fian, Bucureşti, 1993				
	Seminar / laboratory	Teaching Methods	Observations		
1.	Basic principles for measuring	COMMUNICATION: exposure, problematization			
	pollutants in the air, pollutants in	of the exposed material			
	surface waters, wastewater	- TRAINING: exercises, interactive discussions,			
	pollutants, and soil pollutants.	brainstorming			
		- OBSERVATION: case studies, combined			
		methods			
2.	Data processing related to	COMMUNICATION: exposure, problematization			
	environmental quality.	of the exposed material			
	•	- TRAINING: exercises, interactive discussions,			
		brainstorming			
		- OBSERVATION: case studies, combined			
		methods			
3.	Data processing methods in	COMMUNICATION: exposure, problematization			
		of the exposed material			
	methods, calculation of the global	- TRAINING: exercises, interactive discussions,			
	pollution coefficient).	brainstorming			
		- OBSERVATION: case studies, combined			
		methods			
4.	Methodology to asess air quality	COMMUNICATION: exposure, problematization			
	and its pollution. Sampling	of the exposed material			
	methods. Use of mathematical	- TRAINING: exercises, interactive discussions,			
	models for air pollutant dispersion.	brainstorming			
		- OBSERVATION: case studies, combined			
		methods			
5.		COMMUNICATION: exposure, problematization			
	of quality indices. Analysis of				
	quality indicators.	- TRAINING: exercises, interactive discussions,			
		brainstorming			
		- OBSERVATION: case studies, combined			
		methods			
6.		COMMUNICATION: exposure, problematization			
	guide for creating atmospheric	of the exposed material			
	emission inventories. Case studies.	- TRAINING: exercises, interactive discussions,			
		brainstorming			

		- OBSERVATION: case studies, combined	
_	26.1.1.1.0	methods	
7.		COMMUNICATION: exposure, problematization	
	water quality and evaluating their		
		- TRAINING: exercises, interactive discussions,	
	quality, drinking water quality.	_	
		- OBSERVATION: case studies, combined	
	quality.	methods	
8.		COMMUNICATION: exposure, problematization	
	quality indices. Analysis of quality	1	
	indicators.	- TRAINING: exercises, interactive discussions,	
		brainstorming	
		- OBSERVATION: case studies, combined	
		methods	
9.	Models for estimating water	COMMUNICATION: exposure, problematization	
	pollutants. Teamwork. Applications	of the exposed material	
	in a case study.	- TRAINING: exercises, interactive discussions,	
		brainstorming	
		- OBSERVATION: case studies, combined	
		methods	
10.	Study visit to the Cluj-Napoca	COMMUNICATION: exposure,	
	Wastewater Treatment Plant.	- TRAINING: interactive discussions,	
11.	Methodology for assessing soil	COMMUNICATION: exposure, problematization	
	quality and evaluating its pollution		
		- TRAINING: exercises, interactive discussions,	
	standards for soil quality.	brainstorming	
	• •	- OBSERVATION: case studies, combined	
		methods	
12.	Soil sampling. Calculation of	COMMUNICATION: exposure, problematization	
	quality indices. Analysis of quality		
	indicators.	- TRAINING: exercises, interactive discussions,	
		brainstorming	
		- OBSERVATION: case studies, combined	
		methods	
13.	Methodology for assessing noise	COMMUNICATION: exposure, problematization	
	levels. National standards for noise.	<u> </u>	
	Noise sampling.	- TRAINING: exercises, interactive discussions,	
	10	brainstorming	
		- OBSERVATION: case studies, combined	
		methods	
14.	Noise maps. Interpretation and	COMMUNICATION: exposure, problematization	
	discussion.	of the exposed material	
		- TRAINING: exercises, interactive discussions,	
		brainstorming	
		- OBSERVATION: case studies, combined	
		methods	
D	forances	111041040	

References

- Corinaire
- Collection of environmental standards
- Environmental reports
- The updated national management plan related to the portion of the Danube river, the international hydrographic basin, which is included in the territory of Romania, 2021.
- Water Framework Directive 2000/60/EC
- Behmel, S., Damour, M., Ludwig, R., Rodriguez, M.J., 2016. Water quality monitoring strategies A review and future perspectives, Science of the Total Environment 571, 1312–1329.

- Arrouays, D., Mulder, V. L., Richer-de-Forges, A. C., 2021. Soil mapping, digital soil mapping and soil monitoring over large areas and the dimensions of soil security – A review. Soil Security, Volume 5, 100018.
- Singh, D., Dahiya, M., Kumar, R., Nanda, C., 2021. Sensors and systems for air quality assessment monitoring and management: A review. Journal of Environmental Management, Volume 289, 112510.
- https://www.earthdata.nasa.gov/learn/find-data/near-real-time/omps

9. Mixing the contents of the discipline with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program

The subjects covered aim to bring students up to date with the topic of integrated environmental monitoring, providing them with a base of knowledge and useful skills in analyzing and interpreting environmental data and creating skills for systematizing information, drawing up environmental reports, valued skills by the representative employers in the field related to the program.

10. Evaluation

Activity type	10.1 Grading criteria	10.2 Grading methods	10.3 Weight of the
			final grade
10.4 Course	- knowledge and	Written test	70%
	understanding		
10.5 Seminar/laboratory	- knowledge and		30%
-	understanding;	- application activities	
	- the ability to explain and	(laboratory/practical works)	
	interpret;	- control/ project homework	
	- complete and correct		
	resolution of requirements.		

10.6 Minimum performance standard

- Acquiring the knowledge in the course, at a general level;
- The student knows what the main concepts are, recognizes and defines them correctly;
- The specialized language is simple, but correctly used;
- 5 as minimum grade at the seminar/laboratory;
- To draft and support a project according to the framework content.

The signature of the course holder Date

Lecturer Radovici Andrei 06/12/2024

The signature of the seminar holder

Lecturer Radovici Andrei

Departmental approval date

Signature of the department manager

Profesor dr. Cristina Roşu