SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

2.1 Name of the	disci	pline	Ge	eolog	y			
2.2 Course coor	dinato	or	Prof.univ.dr. Călin Baciu					
2.3 Seminar coo	rdina	tor	Prof.univ.dr. Călin Baciu					
2.4. Year of	Ι	2.5 Semes	ter	1	2.6. Type of	E	2.7 Type of	Compulsory
study				evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which	: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which	: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:						hou
						rs
Learning using manual, course support, bibliography, course notes						16
Additional documentation (in libraries, on electronic platforms, field documentation)						12
Preparation for seminars/labs, homework, papers, portfolios and essays						8
Tutorship						4
Evaluations					2	
Other activities:						
3.7 Total individual study hours 42						

3.7 Total individual study hours	42
3.8 Total hours per semester	98
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	-
4.2. competencies	-

5. Conditions (if necessary)

5.1. for the course	Room equipped with computer and video projector
5.2. for the seminar /lab	Room equipped with graphic materials (boards, 3D models) and sample
activities	collections

6. Specific competencies acquired

Professional competencies	 Development of analytical skills by evaluating complex problems and identifying appropriate solutions Understanding the basic concepts of Geology Working with notions from different fields of earth sciences
Transversal competencies	 Integration of geology in the system of environmental sciences Making connections between the different studied disciplines Understanding the interdisciplinarity of environmental sciences

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Presentation of the importance of understanding geological phenomena and how geological information can be used in the characterization of environmental problems			
7.2 Specific objective of the	• Understanding the information on the genesis of the Earth in the light of the			
discipline	Big Bang theory, the internal composition of the Earth and the main units of			
	geological time with specific characteristics			
	• Understanding the concepts related to the main geological processes that			
	take place inside the lithosphere			
	• Understanding the concepts regarding the processes that take place on the			
	Earth's surface under the influence of exogenous factors			
	• Presentation of the main aspects related to the impact that some geological			
	processes have on the environment			

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction: general notions, notions of	- Interactive exposure	2 hours
cosmology	- Dialogue with students	
	- Use of course support	
2. The internal structure of the Earth, the theory of	- Interactive exposure	2 hours
plate tectonics	- Dialogue with students	
	- Use of course support	
3. Geological time: geochronology, relative age and	- Interactive exposure	2 hours
absolute age	- Dialogue with students	
absolute age	- Use of course support	
4. Minerals: definition, physical properties, chemical	- Interactive exposure	2 hours
properties, classification	- Dialogue with students	
properties, classification	- Use of course support	
5. Magmatic processes: intrusive, extrusive and	- Interactive exposure	2 hours
explosive manifestations, types of rocks	- Dialogue with students	
explosive maintestations, types of focks	- Use of course support	
6. Sedimentary processes: disaggregation, alteration,	- Interactive exposure	2 hours
	- Dialogue with students	

rock types	- Use of course support	
7. Metamorphic processes: metallurgical facies, types of metamorphism, types of rocks	Interactive exposureDialogue with studentsUse of course support	2 hours
8. Tectonic deformation processes: crease, fault, detachment, sand cloth	Interactive exposureDialogue with studentsUse of course support	2 hours
9. Surface waters: flowing waters, marine and ocean basins	Interactive exposureDialogue with studentsUse of course support	2 hours
10. Seismic activity: characteristics and parameters of earthquakes	Interactive exposureDialogue with studentsUse of course support	2 hours
11. Landslides: landslides, falls and collapses of blocks, subsidence	Interactive exposureDialogue with studentsUse of course support	2 hours
12. Groundwater resources: aquifer, groundwater, artesian water	Interactive exposureDialogue with studentsUse of course support	2 hours
13. Mineral and energy resources: metal and non-metallic ore deposits, coal and hydrocarbon deposits	Interactive exposureDialogue with studentsUse of course support	2 hours
14. Geology and climate: glaciation, desertification, global warming	Interactive exposureDialogue with studentsUse of course support	2 hours

Bibliography:

- Montgomery C.W., 1995. Environmental Geology, Wm. C. Brown Publishers, 496
- Plummer C., 2016, Physical geology, McGraw-Hill Education, 651 p.
- Rothery D., 2015, Geology, a complete introduction. John Murray Learning, 389 p.
- Tarbuck E., 2005, Earth: an introduction to physical geology. Prentice Hall, 712 p.
- Zacktser I., 2006, Geology and Ecosystems, Springer, 392 p.
- Zumberge J.H., Rutford R.H., 1991. Laboratory manual for physical geology, Wm. C. Brown Publishers, 181 p

8.2 Seminar / laboratory	Teaching methods	Remarks
1. The formation of the Earth in the context of the Big	- Examination of	2 hours
Bang theory, methods and principles of geological	materials and samples	
research	- Solving individual	
	exercises	
2. Earth's inner shells, the movement of lithospheric	- Examination of	2 hours
plates	materials and samples	
	- Solving individual	
	exercises	
3. Geochronological scale of the Earth, radioactive	- Examination of	2 hours
dating	materials and samples	
	- Solving individual	
	exercises	
4. Examination of mineral samples, physical properties	- Examination of	2 hours
of minerals	materials and samples	
	- Solving individual	
	exercises	
5. Examination of samples and examples of igneous	- Examination of	2 hours
rocks	materials and samples	
	- Solving individual	

	exercises	
6. Examination of samples and examples of	- Examination of	2 hours
sedimentary rocks	materials and samples	
	- Solving individual	
	exercises	
7. Examination of samples and examples of	- Examination of	2 hours
metamorphic rocks	materials and samples	
	- Solving individual	
	exercises	0.1
8. Types of creases, faults and shading blades	- Examination of	2 hours
	materials and samples - Solving individual	
	exercises	
9. Floods, coastal erosion	- Examination of	2 hours
7. 1 loods, coastal crosion	materials and samples	2 nours
	- Solving individual	
	exercises	
10. Seismic activity on the territory of Romania	- Examination of	2 hours
, , , , , , , , , , , , , , , , , , ,	materials and samples	
	- Solving individual	
	exercises	
11. Classification of Types of Terrain Displacements,	- Examination of	2 hours
Examples	materials and samples	
	- Solving individual	
	exercises	
12. Types of aquifers and groundwater	- Examination of	2 hours
	materials and samples	
	- Solving individual	
12 Examination of complex and avamalas of week!!	exercises - Examination of	2 hours
13. Examination of samples and examples of metallic		∠ HOUTS
and non-metallic ores	materials and samples - Solving individual	
	exercises	
14. Climate changes with geological and	- Examination of	2 hours
anthropogenic causes	materials and samples	2 110013
anunopogenic causes	- Solving individual	
	exercises	

Bibliography:

- http://www.csam.montclair.edu/earth/eesweb/gorring/geos112/notes.html
- http://www.ac.wwu.edu/~debari/g101/g101.html
- http://www.geol.umd.edu/~jmerck/geol100/
- http://www.uh.edu/~jbutler/physical/onlinefall2001.html
- http://people.hofstra.edu/J_B_Bennington/gkb1cnotes/gkbmenu.html
- http://www.earlham.edu/~parkero/Geos211/2005/2005Lectnotes.htm
- http://www.uwgb.edu/DutchS/EarthSC-202VisualsIndex.HTM
- http://www.geol.lsu.edu/jlorenzo/PhysicalGeology_S2007/Syllabus.1001_07.html

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The structure of the course was made starting from similar courses that appear in the curriculum of other European universities and adapted to the specificity of Romania. The information and concepts presented were chosen following the feedback from various organizations involved in environmental geology studies: NGOs, environmental consulting firms, national and local authorities, etc.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Interest in the presented	Oral – involvement in	20%
	concepts	discussions	
	Active presence	Oral – the quality of the	20%
		questions asked by the	
		student	
10.5 Seminar/lab activities	How to work with samples	Written – relevance of	30%
		observations	
	Involvement in solving	Written – the correctness	30%
	exercises	and ingenuity of the	
		solution	
10.6 Minimum performance standards			

10.6 Minimum performance standards

Each student receives a grade from 1 to 10 for each of the evaluation criteria. In order to be promoted, the student must receive at least a grade of 5 in each of the criteria. The final grade is calculated as a weighted average of the grades obtained in the four criteria.

Date

Signature of course coordinator

Signature of seminar coordinator

22.11.2024

prof.univ.dr. Călin Baciu

prof.univ.dr. Călin Baciu

Date of approval

Signature of the head of department