DISCIPLINE DESCRIPTION

1. About the program

1.1 Higher education	"BABEŞ-BOLYAI" UNIVERSITY OF CLUJ-NAPOCA
institution	
1.2 Faculty	FACULTY OF ENVIRONMENTAL SCIENCE AND
	ENGINEERING
1.3 Department	ENVIRONMENTAL ANALYSIS AND ENGINEERING
1.4 Field of study	ENVIRONMENTAL ENGINEERING
1.5 Study cycle	BACHELOR
1.6 Study Program /	ENVIRONMENTAL ENGINEERING/ ENGINEER
Qualification	

2. Data about the discipline

2.1 Subject name		Information	on te	chnology			
2.2 Holder of course activities		CS	CS III PhD. Deaconu Lucia-Timea				
2.3 Holder of seminar activities		CS	CS III PhD. Deaconu Lucia-Timea				
2.4 Year of study	III 2.5 S	Semester	V	2.6. Type of	С	2.7 Disciplinary	DD- opt
				evaluation		regime	

3. Total estimated time (hours per semester of teaching activities)

3.1 Number of hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total curriculum hours	56	Of which: 3.5 course	28	3.6 seminar	28
Time fund distribution:					hours
Study from the textbook, course materials, bibliography and notes					32
Additional documentation in the library, on specialized electronic platforms and in the field				26	
Preparation of seminars/workshops, homework, reports, portfolios and essays					0
Tutorials				8	
Reviews				4	
Other activities:				-	

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of credits	5

4. Prerequisites (where applicable)

4.1 of curriculum	Applied Informatics
	Statistics and Data processing
4.2 of skills	Basic knowledge for analysing and interpreting experimental scientific data
	Ability to represent, evaluate and interpret experimental / environmental data
	 Application of descriptive statistical concepts, data representations and interpretation
	Research skills

5. Conditions (where applicable)

5.1 The course	classroom equipped with video projector
5.2 Seminar	 seminar room with computer for each student

6. Specific skills to be acquired

o. Specific	c skills to be acquired
	The courses are designed according to international standards, equipping students with fundamental skills for analyzing visualizing, and interpreting alimete and environmental
	fundamental skills for analyzing, visualizing, and interpreting climate and environmental datasets using Python and other scientific computing tools.
Professional skills	 The structure of the course and seminar fosters hands-on experience in Python programming, including the use of Jupyter Notebooks and essential libraries like NumPy, Pandas, and Matplotlib for data processing and representation. Students acquire both foundational and practical knowledge necessary for creating research projects, reports, and presentations in environmental engineering and climate science.
Pro	Gain proficiency in managing and analyzing geospatial and time-series data relevant to climate science, emphasizing the integration of statistical and computational methods.
	Develop a professional and ethical approach to scientific computing, fostering responsibility and critical thinking in the application of computational tools to real-world environmental challenges.
es	ability to represent, evaluate and interpret experimental data
versa	research skills
transversal competences	application of descriptive statistics concepts, data representation and interpretation

7. Objectives of the subject (from the grid of competences)

7.1 Overall aim of the subject	to know, understand and deepen computer science concepts with specific reference to data representation and processing
7.2 Specific objectives	 developing knowledge and skills in computer operation, using specific programs for data processing and representation developing the ability to analyze experimental data from scientific work developing skills in using scientific databases with environmental applications

8. Contents

8.1 Course	Teaching methods	Remarks
C1. Information Technology - objectives and organization	Participative lecture, dialog	
C2. Introduction to Programming Languages for Climate		
Science and Scientific Computing; Python Basics for	Participatory lecture, dialog	
Scientific Computing; Foundational programming concepts,		
syntax, and problem-solving in Python. Jupyter Notebook		

C3. Data Structures and Algorithms in Python: Building Efficient Programs for Scientific Data Handling: Lists and Tuples, Dictionaries and Sets	Participative lecture, dialog, exposition
C4. Scientific Libraries in Python: NumPy and Pandas	Douticinative lecture dielec
Core libraries for numerical and data analysis.	Participative lecture, dialog
C5. Data Visualization with Matplotlib and Seaborn	Participative lecture, dialog,
Creating and interpreting impactful visualizations.	exposition, demonstration
C6. 7. Introduction to Geospatial Analysis Using Python	
Handling and visualizing geospatial data for environmental	Participative lecture, dialog, exposition, demonstration
applications.	exposition, demonstration
C7. Statistical Modeling and Hypothesis Testing in Python	Participative lecture, dialog,
Application of statistical concepts to scientific datasets	exposition, demonstration
	exposition, demonstration
C8. Python for Climate Data Analysis; Analyzing climate	Participative lecture, dialog,
datasets, including temperature, precipitation, and emissions.	exposition, demonstration
C9. Time Series Analysis for Climate and Environmental Data	Participative lecture, dialog,
Analyzing temporal trends in environmental and climate data.	exposition
C10. Introduction to Satellite Data and Ground-Based	
Observations Using Python; Overview of remote sensing and	Dialogue, presentation
satellite imagery	
C11. Analyzing Satellite Data with Python and Jupyter	Douticipative lecture dialog
Notebooks; Understand satellite data formats; Apply Python tools to analyze satellite data, Visualize and interpret satellite	Participative lecture, dialog, exposition
data using Python libraries	Caposition
C12. In-Situ Data and Satellite Collocations: A Comparative	
Approach Using Python; Understand the concept of	Dialogue presentation
collocations (matching satellite data with in-situ	Dialogue, presentation
measurements).	
C13. Discussions and questions before the written assessment	Participative lecture, dialog
C14. Colloquium	Evaluation
Ribliography	

Bibliography

Deaconu L., Information technology - course support (electronic format - CD)

Allen B. Downey, Think Stats: Exploratory Data Analysis in Python, 2014, O'Reilly Media; 2nd ed. Edition, ISBN-13: 978-1491907337

Maurizio Petrelli, Introduction to Python in Earth Science Data Analysis, 2022, EAN 9783030780579 **Daniel S. Wilks**, Statistical Methods in the Atmospheric Sciences 4th Edition, 2019, Elsevier;, ISBN-13: 978-0128158234

Alex Decaria, Grant W Petty, Linda Weidemann, Python Programming and Visualization for Scientists 2nd ed. Edition, Sundog Publishing, LLC; ISBN-13: 978-0972903356

8.2 Seminar	Teaching methods	Remarks
L1. Getting Started with Python: Your First Steps into Programming; Overview of tools needed (Python installation, Jupyter Notebook setup; Variables and Data Types: integers, floats, strings, and Booleans; arithmetic operations, string concatenation;	Dialogue, computer exercise	
L2. Hands-on Python Programming Exercises Practice foundational Python concepts through exercises. Conditional Statements: if, elif, else; Loops: Introduction to for and while loop; Hands-On Mini Project	Dialog, computer exercise	
L3. Solving Real-World Problems with Python Algorithms: Finding Extremes in Data; Filtering Environmental Data; Data Aggregation Algorithms	Dialog, computer exercise	

L4. Case Studies in Data Analysis with Python Libraries; Data	Di I
Loading with Pandas; Analyzing Trends; Visualizing	Dialog, computer exercise
Environmental Data	
L5. Creating and Interpreting Visualizations for	
Environmental Data; Bar and Line Graphs, Customizing Plots,	Dialog, computer exercise
Interpreting	
L6. Geospatial Data Manipulation: Practical Applications,	Dialogue, computer
Introduction to GeoPandas/ Cartopy; Create basic maps	exercise
L7. Statistical Techniques for Analyzing Environmental Data	
Hands-on application of statistical methods to environmental	
datasets. Descriptive Statistics with Pandas; Calculate mean,	Dialogue, computer
median, mode, and standard deviation of environmental data.	exercise
Correlation and Regression - correlations between variables	
and linear regression;	
L8. Climate Data Exploration: Hands-On Python Practice	Dialogue, computer
In-depth exercises on handling climate datasets.	exercise
L9. Analyzing and Visualizing Time Series Data Practically	Dialogue, computer
Interactive sessions on time series analysis.	exercise
L10. Introduction to common satellite datasets (MODIS,	
CALIOP, SEVIRI etc.) and file formats (GeoTIFF, HDF5,	
NetCDF). Introduction to In-Situ Data. Loading and	
processing satellite and in-situ data in Python using Pandas and	
Matplotlib.	
L11. Working with Satellite Data in Python and Jupyter Notebooks; Practice loading and preprocessing satellite data.	
Apply Python tools to analyze and visualize satellite images.	Dialogue, computer
Use Jupyter Notebooks for documentation and reporting of	exercise
satellite data analysis.	
L12. Hands-On Collocations and Comparisons of In-Situ and	
Satellite Data; Extract satellite data at specific locations and	Dialogue computer
match it with in-situ measurements. Perform statistical	Dialogue, computer exercise
comparisons between the two datasets. Visualize the results	CACICISC
and interpret the findings.	D. I
L13. Capstone Seminar: Python in Climate Science.	Dialogue, computer
Preparation for the final examination	exercise Evaluation
L14. Verification of the knowledge acquired in L1 - L13	Evaluation

Bibliography

Deaconu L. – Information technology - seminar documentation (electronic format - CD)

Aileen Nielsen, Practical Time Series Analysis: Prediction with Statistics and Machine Learning 1st Edition, 2019, O'Reilly Media;, ISBN-13: 978-1492041658

David Landup, Data Visualization in Python with Pandas and Matplotlib, 2021, ISBN-13: 979-8521342877

Bonny P. McClain, Python for Geospatial Data Analysis, 2022, O'Reilly Media, ISBN 109810479X

9. Corroboration of subject contents with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program

The content is consistent with the curricula of similar centers in the country and abroad. The structure was determined after studying the content of the curricula of the Faculty of Physics (Babeş-Bolyai University), the Faculty of Economics and Business Management (Babeş-Bolyai University), and the Master's program in Bioinformatics and Biostatistics (Iuliu Haţieganu University of Medicine and Pharmacy). Also, the global trend towards e-learning platforms such as Coursera, Udemy, Lynda, etc. has allowed an update of the content, including as video clips containing hints on how to solve the exercises.

Type of activity	10.1 Evaluation criteria	10.2 Assessment methods	10.3 Weighting in the final mark
10.4 Course	Knowledge of the concepts presented in the course	Written assessment	3,0 points
10.5 Seminar	Checking your ability to solve the exercises using the programs covered	Computer assessment	6.0 points*

10.6 Minimum performance standard

- Making graphs and simple calculations using spreadsheets
- Understanding the basics of how to represent quantitative/qualitative data

*	1	0	point	will	he	added	tο	the	final	mark
	т.	·U	pomi	VV 111	ν	auucu	w	uic	minai	mar.

Date of completion	Signature of course holder	Signature of seminar holder		
05.12.2024	Deacon-	Deacon-		
Date of departmental app	roval	Signature of the head of department		