SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

2.1 Name of the	discip	oline	Managemen		ementul integrat	al	deseurilor / Integ	rated waste
			ma	anage	ement			
2.2 Course coordinator			Cr	istina	Modoi			
2.3 Seminar coordinator			Cr	istina	Modoi			
2.4. Year of	4/4	2.5 Semes	ter	7/4	2.6. Type of	E	2.7 Type of	DD
study					evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28	
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						

3.7 Total individual study hours	98
3.8 Total hours per semester	154
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Basic knowledge of environmental science and engineering	
4.2. competencies	Technical and design skills	
F (C) 1141 (C)		

5. Conditions (if necessary)

5.1. for the course	Digital projector and laptop required	
5.2. for the seminar /lab	Digital projector and laptop required	
activities		

6. Specific competencies acquired

	Basic knowledge of waste management
nal	- Basic knowledge of municipal solid waste management and the use of sustainable waste management alternatives
Professional competencies	 - Basic knowledge of waste management from specific industries, including hazardous waste;
P C0	Application of product life cycle concepts in waste management
rsal	Connections with specific areas of contaminated sites, environmental impacts and risks, other environmental releases;
Transversal	• Team work

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To provide a solid foundation for future environmental professionals to develop their waste management skills			
7.2 Specific objective of the discipline	 Knowledge of the main classes of waste and their sources; - Establishing theoretical and practical interdependencies between the internal structure, properties, processing and performance in use for each class of waste; 			
	 Providing a quantum of knowledge about waste minimization, recovery, recycling, reuse, reuse, treatment technologies; the use of these modern technologies as alternatives to landfilling; 			
	 Methods of final utilization and/or disposal of waste, pollution generated by waste and its improper management; impact of waste on the environment. 			

8. Content

8.1 Course	Teaching methods	Remarks
Introduction: introduction to waste; generalities	participatory lecture,	
	dialogue, presentation,	
	debate	
National and international institutional, legislative and	participatory lecture,	
regulatory framework of waste management: regulations	dialogue, presentation	
and laws related to the management of different		
categories of waste		
Environmentally engineered landfills: general design	participatory lecture,	
scheme of environmentally engineered landfills	dialogue, presentation	
Integrated waste management in the context of the	participatory lecture,	
circular economy	dialogue, presentation	
Household waste management. Aerobic and anaerobic	participatory lecture,	
composting of organic waste	dialogue, presentation	

Management of construction and demolition waste: examples of valorization of construction and demolition waste;	participatory lecture, dialogue, presentation	
Hazardous waste. Types of hazardous waste. Properties of hazardous waste.	participatory lecture, dialogue, presentation	
Incineration of waste: modern incineration techniques, reduction of pollutants from waste incineration	participatory lecture, dialogue, presentation	
Co-incineration of waste in the cement industry: co-incineration furnaces, advantages of using co-incineration; Other methods of waste thermal treatment	participatory lecture, dialogue, presentation	
Mining waste issues: environmental impacts and risks of mining waste;	participatory lecture, dialogue, presentation	
Pollution abatement, acid water treatment, ecological reconstruction of mining waste dumps; long-term monitoring of mining waste.	participatory lecture, dialogue, presentation	
Waste from manufacturing and other industries; implementation of zero waste concept in waste prevention strategy,	participatory lecture, dialogue, presentation	
Review course and general conclusions	participatory lecture, dialogue, presentation	

Bibliography:

- 1. Yadav, D. K., Kumar, P., Singh, P., & Vallero, D. A. (Eds.). (2021). Hazardous waste management: An overview of advanced and cost-effective solutions. Elsevier, ISBN: 978-0-12-824344-2
- 2. Paul T. Williams, 2005, Waste Treatment and Disposal, 2nd Edition, John Wiley and Sons, ISBN: 978-1-118-68737-6
- 3. Cristina Modoi, Waste management course 2023-2024, electronic.
- 4. Dri M., Antonopoulos I. S., Canfora P., Gaudillat P., Best Environmental Management Practice for the Food and Beverage Manufacturing Sector, JRC Science for Policy Report, EUR 29382 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-94313-3, doi:10.2760/2115, JRC113418
- 5. European Commission, A new Circular Economy Action Plan For a cleaner and more competitive Europe, Bruxelles, 2020.
- 6. Cities and circular economy for food, 2019, Ellen MacArthur Foundation
- 7. Lottermoser, B.G. (2007), Mine waste: Characterization, Treatment, Environmental Impacts, Second Edition, Springer Verlag Berlin Heidelberg
- 8. H.K. Jeswani, G. Figueroa-Torres and A. Azapagic, 2021, The extent of food waste generation in the UK and its environmental impacts, *Sustainable Production and Consumption* 26 (2021) 532–547
- 9. Zhou, H., et.al., 2022, A deep learning approach for medical waste classification, Scientific Reports | (2022) 12:2159 | https://doi.org/10.1038/s41598-022-06146-2, Nature portfolio
- 10. Magdalena Daria Vaverková, Dana Adamcová, Jan Winkler, Eugeniusz Koda, Lenka Petrželová, Alžbeta Maxianová, Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks, Science of The Total Environment, Volume 723, 2020, 137971, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.137971
- 11. Isabella Pecorini, Eleonora Peruzzi, Elena Albini, Serena Doni, Cristina Macci, Grazia Masciandaro, Renato Iannelli, 2020, Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application, Sustainability 2020, 12, 3042; doi:10.3390/su12073042,
- 12. H. Jouhara, D. Czajczyńska, H. Ghazal, R. Krzyżyńska, L. Anguilano, A.J. Reynolds, N. Spencer, Municipal waste management systems for domestic use, Energy, Volume 139, 2017, Pages 485-506, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2017.07.162.
- 13. Yang, CK., Ma, HW. & Yuan, MH. Measuring circularity potential for medical waste management a dynamic circularity performance analysis. *Sustain Environ Res* 33, 29 (2023). https://doi.org/10.1186/s42834-023-00188-5
- 14. Abraham T. Gebremariam, Francesco Di Maio, Ali Vahidi, Peter Rem, Innovative technologies for recycling End-of-Life concrete waste in the built environment, Resources, Conservation and Recycling, Volume 163, 2020, 104911, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2020.104911.

- 15. Sun, X., Yin, D., Qin, F. *et al.* Revealing influencing factors on global waste distribution via deep-learning based dumpsite detection from satellite imagery. *Nat Commun* **14**, 1444 (2023). https://doi.org/10.1038/s41467-023-37136-1.
- 16. Andrea Guerrini, Pedro Carvalho, Giulia Romano, Rui Cunha Marques, Chiara Leardini, Assessing efficiency drivers in municipal solid waste collection services through a non-parametric method, Journal of Cleaner Production, Volume 147, 2017, Pages 431-441, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2017.01.079.

9.2 Caminar / Jaharatary	Tooching methods	Damarka
8.2 Seminar / laboratory Labor protection notions on waste handling and	Teaching methods presentation,	Remarks 2
presentation of laboratory work.	problematization,	
Use of specific legislation in waste management.	discussion	
The basic components of ecological landfills.	presentation,	2
Landfill monitoring and landfill costs.	problematization, discussion	
Calculation of the quantities of waste generated by	presentation,	2
the community. Emissions from landfills.	problematization, discussion;	
Aerobic composting / anaerobic digestion,	experiment,	4
sustainable alternatives to landfilling biodegradable	conversation, discovery learning	
organic waste	Carming	
Monitoring aerobic composting and anaerobic		
digestion processes.		
XXX	11	
Waste codification according to the European Waste	lecture; small group work; discussion;	2
Catalogue. Importance of coding and keeping track	discovery learning;	
of waste produced in different sectors (households,	discovery rearring,	
industry, agriculture, etc.)		
Waste management plans at national, regional,	exposure,	2
county, county, city level. Their importance and	problematization,	
necessity. Correlation of management plans with	exercises, case studies,	
types and quantities of waste produced by the	combined methods	
community		
Construction and demolition waste management.	experiment,	4
Case study.	conversation, discovery	
Hazardous wasta Munisimal hazardous wasta	learning	2
Hazardous waste. Municipal hazardous waste.	lecture, problematization,	2
Hazardous waste management	exercises, case studies	
Incineration, hazardous and non-hazardous waste.	lecture,	2
	problematization,	
Wests as insinguation Otherwick 1 Cd	exercises, case studies	
Waste co-incineration. Other methods of thermal	lecture, problematization,	2
treatment of waste	exercises	
Estimation of incineration emissions. Case study.	lecture,	2
	problematization,	
	exercises	

Environmental impacts and risks from different types of landfills (e.g. mining waste, waste from thermal power plants, other landfills with relevant impacts)	lecture; discovery learning; solving examples in work teams; discussions;	2
Resource recovery from mining waste	lecture, problem-posing, discussion	2
Waste management plan for an industrial company	exposure, problem- posing, discovery learning and connections with subjects already studied.	2

Bibliografie

- 1. Jonathan Cohen, Jorge Gil, 2021, An entity-relationship model of the flow of waste and resources in city-regions: Improving knowledge management for the circular economy, Resources, Conservation & Recycling Advances, Volume 12, 2021, 200058, ISSN 2667-3789, https://doi.org/10.1016/j.rcradv.2021.200058.
- **2.** Beatriz C. Guerra, Sheida Shahi, Aida Mollaei, Nathalie Skaf, Olaf Weber, Fernanda Leite, Carl Haas, 202, Circular economy applications in the construction industry: A global scan of trends and opportunities, Journal of Cleaner Production, Volume 324, 2021, 129125, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2021.129125.
- **3.** M. Nelles, J. Grünes, G. Morscheck, 2016, International Conference on Solid Waste Management, 5IconSWM 2015 Waste Management in Germany Development to a Sustainable Circular Economy?
- **4.** A. Mukherjee , B. Debnath, Sadhan Kumar Ghosh, 2016, International Conference on Solid Waste Management, 5IconSWM 2015 A Review on Technologies of Removal of Dioxins and Furans from Incinerator Flue Gas
- **5.** Fang Yuan, Li-yin Shen, Qi-ming Li, 2011, Emergy analysis of the recycling options for construction and demolition waste, . / Waste Management 31 (2011) 2503–2511
- **6.** Jaya Rawat, Srinivasulu Kaalva, Vivek Rathore, D.T. Gokak and Sanjay Bhargava, 2016, International Conference on Solid Waste Management, IconSWM 2015 Environmental Friendly Ways to Generate Renewable Energy from Municipal Solid Waste
- 7. A. Aicha, &Sadhan K Ghoshb, 2016, International Conference on Solid Waste Management, 5IconSWM 2015 Application of SWOT Analysis for the Selection of Technology for Processing and Disposal of MSW
- **8.** S. Vigneswaran, J. Kandasamy, M.A.H. Johi, 2016, International Conference on Solid Waste Management, 5IconSWM 2015 Sustainable Operation of Composting in Solid Waste Management
- 9. Yahya Safari, Kamaladdin Karimyan, Vinod Kumar Gupta, Arash Ziapou, Masoud Moradi, Nasrin Yoosefpour, Maliheh Akhlaghi, Hooshmand Sharafi, 2018, A study of staff's awareness and attitudes towards the importance of household hazardous wastes (HHW) management (A Case Study of Kermanshah University of Medical Sciences, Kermanshah, Iran)
- **10.** Cai Bo-Feng, Liu Jian-Guo, Gao Qing-Xian, Nie Xiao-Qin, Cao Dong, Liu Lan-Cui, Zhou Ying, Zhang Zhan-Sheng, Estimation of Methane Emissions from Municipal Solid Waste Landfills in China Based on Point Emission Sources, Advances in Climate Change Research, Volume 5, Issue 2, 2014, Pages 81-91, ISSN 1674-9278, https://doi.org/10.3724/SP.J.1248.2014.081.
- **11.** Benjamin M. Stark, Kuo Tian, Max J. Krause, Investigation of U.S. landfill GHG reporting program methane emission models, Waste Management, Volume 186, 2024, Pages 86-93, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2024.05.037.
- **12.** Cosimo Magazzino, Marco Mele, Nicolas Schneider, The relationship between municipal solid waste and greenhouse gas emissions: Evidence from Switzerland, Waste Management, Volume 113, 2020, Pages 508-520, ISSN 0956-053X, https://doi.org/10.1016/j.wasman.2020.05.033
- 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The knowledge acquired during the course can be used in the fields of: municipal solid waste management, industrial, hazardous and non-hazardous waste management; academic field;
- - the graduates can prepare specific environmental studies for various waste management activities generated in the domestic environment or in different industrial branches;
- - graduates receive information and acquire skills in environmental consultancy.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Accuracy of answers to questions. Student activity during the semester lectures	Final exam (written)	60%
10.5 Seminar/lab activities		Presentation of the project. Evaluation of the students during seminar classes	40%
10.6 Minimum performance standards			

Date

Signature of course coordinator

Signature of seminar coordinator

04/12/2024

Date of approval

Signature of the head of department