SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Environmental Science and Engineering
1.3 Department	Department of Environmental Analysis and Engineering
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme /	Environmental Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the	Meteorolo	Meteorology and climatology					
discipline							
2.2 Course coordinator		Prof. dr. Adina Croitoru					
2.3 Practical work activ	ities	Prof. dr. Adina Croitoru					
coordinator							
2.4 Year of study II 2	5 Semester	III	2.6. Type of	С	2.7 Type of	DF.DD.	
			evaluation		discipline	Mandatory	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 Practical work	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 Practical work	28
Time allotment:					
					urs
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					5
Evaluations					5
Other activities					10

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1 Curriculum	•	Knowledge acquired by deepening the contents taught within the
		disciplines Basics of Environmental Science, Environmental
		Geodynamics, and Environmental Geography facilitates the
		understanding and accessibility of the proposed topics, and
		alternatively, the students will strengthen their operational conceptual
		base by activating and capitalizing on the pre-existing information fund.

4.2 Competencies	• The continuity of the applied valorization of the acquired knowledge allows a gradual reading of the chapters, in close relation to the topic of
	the previously studied discipline.

5. Conditions (if necessary)

5.1. for the course	Amphitheater equipped with video projector		
5.2. for the seminar /lab	• Room equipped with computers; Classic weather station; Suitable area		
activities	for topographic and microclimatic measurements		

6. Specific competencies acquired

6. Specific	competencies acquired
	• Understanding the main physical processes and the dynamic phenomena and processes associated with weather at all scales of occurrence.
ncies	 Develop the skills of analysis and interpretation of meteoro-climatic data and information in order to formulate concrete arguments and approaches;
compete	 The use of various ways of written and oral communication in relation to the specifics of the discipline;
Professional competencies	• Useful skills for the purpose of pertinent interpretation of the information provided by the meteorological centers and the use of data in forecasting the evolution of the weather;
Prof	Ability to write a scientific paper in the field;
	• To learn how to use methods and techniques for field investigation of micro- and topoclimates.
	Deepening the methods, techniques and procedures of meteo-climatic research;
encies	• Awareness of the global problems of humanity that interact with weather and climate: climate change/fluctuation, degradation of the ozone layer, etc.
l compet	 Formation of practical skills of interpretation and analysis of meteoro-climatic risk situations;
Transversal competencies	 To develop the skills necessary for multidisciplinary cooperation, communication and building of partnership relationships based on the application of acquired knowledge and the development of transdisciplinary scientific reasoning.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Study and investigation of processes, phenomena, and meteo-climate parameters
7.2 Specific objectives	 Knowledge of the laws governing atmospheric processes and phenomena, as well as their regime and distribution to identify the determining factors of the state and quality of the atmospheric environment;

•	Development of observational and environmental awareness through
	the interpretation of atmospheric phenomena;

- Understanding the laws underlying atmospheric processes and phenomena to adopt the best measures for atmospheric management;
- Acquiring the criteria for classifying climates and the elements of differentiation both at the planetary, regional, and local levels;
- Application of the concepts discussed in different case studies.

8. Content

8.1 Course	Teaching methods	Remarks
Part I. Meteorology	Lecture, Heuristic	2 hours
	Conversation	
Introduction to Meteorology		
<i>Keywords:</i> meteorology, branches of meteorology		
Definition, object and tasks of meteorology.		
The branches of meteorology and its connection with		
other sciences.		
The relations of meteorology with different human		
activities.		
Brief history of the development of meteorology		
Earth's atmosphere	Lecture, Heuristic	2 hours
Keywords: atmosphere, mass of atmosphere.	Conversation,	
The origin and shape of the atmosphere.	Brainstorming,	
Composition of atmospheric air. Constant and	Explanation	
variable components. Atmospheric impurities and air		
pollution.		
The mass of the Earth's atmosphere.		
The vertical structure of the atmosphere.		
Keywords	Lecture, Heuristic	2 hours
: direct, diffuse, reflected, terrestrial and atmospheric	Conversation,	
solar radiation.	Explanation,	
The Sun and Solar Activity.	Interactive	
The spectral composition of solar radiation.	Discussions	
Direct solar radiation-Solar constant. Diffuse		
radiation. Total radiation. Reflected radiation-		
Albedoul. Terrestrial and atmospheric radiation. The		
radiative-caloric balance at the Earth's surface and in		
the atmosphere.		
Air temperature	Lecture	2 hours
Keywords: thermal regime, adiabatic processes,	Explanation	
atmosphere stability		
Transport of heat in the atmosphere.		
The diurnal movement of the air temperature. The		
annual movement of the air temperature. Vertical		
temperature distribution in the troposphere.		
Adiabatic processes in the atmosphere. Potential,		
equivalent and equivalent-potential temperature.		
The conditions of vertical stability in the atmosphere.		
Temperature inversions in the troposphere.		
Water vapour in the atmosphere	Lecture	2 hours
Keywords: water vapour, evaporation, relative	Explanation	
humidity.		
Water phase system.		

Lecture Explanation, Multimedia presentation – types of clouds	2 hours
	2.1
Lecture, Interactive Discussions, Heuristic Conversation, Case Studies	2 hours
Lecture Explanation	2 hours
Brainstorming	
Lecture, Explanation, Heuristic Conversation	2 hours
Multimedia Presentation – Atmospheric Fronts, Explanation, Conversation	2 hours
	Explanation, Multimedia presentation – types of clouds Lecture, Interactive Discussions, Heuristic Conversation, Case Studies Lecture, Explanation, Brainstorming Lecture, Explanation, Heuristic Conversation

Air masses. Classification of air masses. The main		
geographical types of air masses and their		
characteristics.		
Atmospheric fronts. Genesis and classification. The		
main types of atmospheric fronts: warm front, cold		
front and occluded front.		
Cyclonic and anticyclonic activity	Lecture, Explanation,	2 hours
Keywords: cyclone, anticyclone, forecast	Heuristic	2 Hours
General considerations on cyclonic activity. The	Conversation	
genesis and evolution of the cyclone. The structure of	Conversation	
the young cyclone and the weather. Cyclone		
trajectories in Europe.		
Anticyclones and their influence on the weather.		
Trajectories of mobile anticyclones in Europe.		
The convective phenomenon and the weather.		
<u>Part II.</u> Climatology	Lecture, Heuristic	2 hours
Introduction	Conversation,	
Keywords: climate, climatogenetic factors.	Brainstorming,	
The notion of climate. Climatic elements and factors.	Explanation	
Branches of climatology and their practical		
importance.		
Genetic radiative factors of climate		
Keywords: total radiation, radiative balance.		
The distribution of total radiation to the Earth's		
surface. The geographical distribution of the		
radiative-caloric balance at the Earth's surface.		
Geographical factors of climate		
Keywords: geographical factors of climatogenesis.		
The influence of land and sea on climate.		
The influence of relief on climate.		
The influence of vegetation on the climate.		
The influence of the snow and ice layer on the		
climate.		
Anthropogenic influence on climate.		
* •		
Keywords: baric field, general circulation of the		
atmosphere. The fundamental features of the general circulation		
The fundamental features of the general circulation		
of the atmosphere.		
The baric field and planetary current systems in the		
upper troposphere and stratosphere. Baric field and		
atmospheric circulation in the lower troposphere and		
at the earth's surface. The climatogenetic importance		
of the trade winds and the equatorial zone. Monsoon		
circulation. The climatic role of ocean currents		
Climate classification	Lecture, Heuristic	2 hours
Keywords: climate classification.	Conversation	
Basic problems of climate classification.		
Classification of climates according to W. Kuppen.		
Classification of climates according to Emm. De		
Martone. Classification of climates according to L.S.		
Berg. Classification of climates according to B.P.		
Alisov.		
Geographical types of climate		
Keywords: geographical types of climate.		
210) or all good applicant types of chimate.		

Types of climate in the equatorial zone. Types of		
climate in subequatorial areas. Types of climate in		
tropical areas. Types of climate in subtropical areas.		
Types of climate in temperate zones. The types of		
climate in the subarctic and subantarctic areas. The		
types of climate in the northern and southern polar		
regions.		
Colloquium	Exposition, Heuristic	2 hours
	Conversation	

Bibliography

- 1. Arghiuș, V.,(2010), Meteorologie și climatologie, suport de curs pentru uz intern, Biblioteca Facultatii de Stiinta Mediului
- 2. Ciulache, S.,(2004), Meteorologie și Climatologie, Editura Universitară București
- 3. Farcas, I. (1990), Structura si dinamica atmosferei, Universitatea "Babes-Bolyai", Cluj-Napoca
- 4. Oliver, J., (2005), Encyclopedia of World Climatology, Encyclopedia of Earth Sciences Series, Springer, Netherlands
- 5. Pop, Gh.,(1988), Introducere în meteorologie și climatologie, ESE, București
- 6. Saha, K., (2008), The Earth's Atmosphere Its Physics and Dynamics, Springer, Berlin

8.2. Practical work	Teaching methods	Remarks
The structure of the meteorological network in	Lecture,	2 hours
Romania. Organization and Observation in Classical	Conversation	
Weather Stations		
Measurement of the main meteorological parameters	Lecture, the	2 hours
at classical meteorological stations. Measurement of	Demonstration	
solar radiation. Soil and air temperature measurement	Practical exercise	
Measurement of the main meteorological parameters	Lecture, the	2 hours
at classical meteorological stations. Measurement of	Demonstration	
air humidity and atmospheric precipitation.	Practical exercise	
Measurement of atmospheric pressure, wind on the		
ground, and in altitude		
Atmospheric research using radiosonde, weather	Lecture,	2 hours
radar, and weather satellites	Demonstration,	
	Practical Exercise	
Automatic weather stations – DAVIS weather station	Lecture,	2 hours
	Demonstration,	
	Practical Exercise	
Statistical analysis of maximum daily precipitation	Case Study, Practical	2 hours
	Exercise	
Determination of average temperature trends using the	Case Study, Practical	2 hours
MAKESENS method	Exercise	
Field trip - Transylvania Nord Regional	Observations,	3 hours
Meteorological Center - Cluj Meteorological Station	measurements,	
- meteorological observation platform	interactive	
_	discussions	
Field trip - Transylvania Nord Regional	Observations,	3 hours
Meteorological Center - Cluj Meteorological Station	interactive	
- Regional Weather Forecast Center		

	discussions, Practical	
	exercise	
Field trips – micro and topoclimatic determinations in	Practical exercise,	6 hours
the urban area of Cluj-Napoca with the help of	measurements	
automatic meteorological stations		
Presentation of the results of the field trips.	Oral evaluation.	2 hours
Colloquium	Interactive	
•	discussions	

Bibliography

- 1. Arghiuş, V.,(2013), Meteorologie şi climatologie, caiet de aplicații şi lucrări practice pentru uz intern, Biblioteca Facultatii de Stiinta Mediului
- 2. Tiscovschi, A., Diaconu, C., (2004), Meteorologie și hidrologie lucrări practice, Ed. Universitară București
- 3. Wilks, D., (1995), Statistical Methods in the Atmospheric Sciences, vol. 59, International Geophysics Series, Academic Press, USA
- 4. http://www.meteoromania.ro/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations, and representative employers within the field of the program

- The content of the discipline is in line with what is studied in other prestigious universities in the country and abroad, being constantly updated according to the new scientific discoveries and the requirements of the labor market;
- The analysis of the opinions formulated by employers regarding the preferential attributes of the training of specialists resulted in a high degree of appreciation of their professionalism, which confirms that the structure and content of the educational curriculum built for this study program are correct, comprehensive, and efficient.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the final grade
10.4 Course	Acquiring new knowledge	Colloquium	66 %
	Ability to operate with		
	new knowledge		
10.5 Practical work	Ability to understand	Oral colloquium	33 %
	practical applications		
	Active participation and		
	degree of involvement in		
	practical work sessions		

10.6 Minimum Performance Standards

- Definition of atmospheric parameters;
- Knowledge of the basic features of meteorological parameters (observation/measurement mode, genetic factors, variation, etc.);
- Knowledge of the types of climate and their main characteristics;

Date of completion	Signature of the course coordinator	Signature of the seminar coordinator
08.05.2024	Adius Boite	Adius Boite
Date of approval	Signature of the	ne head of department