SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

2.1 Name of the	discij	oline	Methods for separating chemical pollutants					
2.2 Course coord	linato	r	Conf.Dr.Habil. Beldean-Galea Mihail Simion					
2.3 Seminar coor	dinat	or	Conf.Dr.Habil. Beldean-Galea Mihail Simion					
2.4. Year of	IV	2.5 Semes	ester 8 2.6. Type of Ex 2.7 Type of Op					Op
study					evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship					
Evaluations					
Other activities:					
A = 11 11 11 1 1 1		4.0			

3.7 Total individual study hours	42
3.8 Total hours per semester	98
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

4.1. curriculum	It is advisable to promote disciplines in the categories of analytical
	chemistry, instrumental analysis, and physics.
4.2. competencies	Cognitive skills: possession of basic acquisitions in the fields of chemical
	analysis in general.
	• Action skills: information and documentation, group work, argumentation
	and use of information technologies for acquisition + processing of
	analytical data; carrying out active and critical analyses;
	operationalization and application of knowledge.
	• Affective-attitudinal skills: ability to be involved in the teaching process,
	in an active and interactive manner; ability to perform complex
	experiments.

5. Conditions (if necessary)

5.1. for the course	Classroom equipped with video projector and multi-media system.			
5.2. for the seminar /lab	Laboratory equipped with related equipment: Thin layer			
activities	chromatography, liquid and gas chromatography, equipment for			
	extraction and purification of extracts, computer.			

6. Specific competencies acquired

o. Specific	competen	icies acquired
	Knowle	edge, understanding, analysis and application in inter- and trans-disciplinary
S	perspec	ctives, of phenomena and processes related to advanced and ultra-performance
nci	analyti	cal separation techniques for investigating environmental quality.
ete	• The ab	ility to make a pertinent and contextualized choice of analytical methods / techniques /
mp	optimiz	zations in strict accordance with concrete situations and available resources.
၁	• Determ	nination of concentration levels of chemical pollutants, with an emphasis on hazardous
ona	chemic	al compounds at trace levels.
ssic	 Choice 	of appropriate environmental investigation techniques, depending on the polluting
Professional competencies	factors	and the targeted environmental compartments.
Pr	 Acquis 	ition of extremely useful practical skills related to the determination of chemical
	polluta	nts through advanced separation techniques.
	• Develo	pment of action skills – information and documentation, group work, argumentation
cies	and use	e of information technologies for acquisition and processing of analytical data.
ten	 Compe 	etence to reflect – individually and collectively – on various issues, topics, problems.
ıpe	 Practic 	ing cognitive flexibility.
con	 Achiev 	ring effective communication (verbal and written).
l ag	Active	and interactive participation of students in the teaching process.
Transversal competencies	• Method	dological skills: taking notes, systematizing, ordering, etc.; formulating research
msv	topics;	formulating problem situations and solving them; establishing hypotheses and
Tra	verifyi	ng them; writing texts; relating to and empathizing with those around them;
_	collabo	oration and group work; involvement in the management of an activity.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquiring knowledge on a series of analytical techniques applicable for the determination of chemical compounds in mixtures from various environmental factors
7.2 Specific objective of the discipline	 Acquiring the basic concepts and principles of the main analytical techniques used for the determination of chemical compounds in mixtures. Knowing the fields of applicability of analytical separation techniques Acquiring a set of practical skills specific to ultra-trace chemical analysis, including instrumentation calibration and validation of analysis methods.

8. Content

8.1 Course	Teaching methods	Remarks
The diversity of pollutants that affect environmental	Interactive Lecture	Attendance at the
health requires the use of methods capable of		course is optional, but
determining in a single analysis a large number of	Exposition	recommended.
organic compounds and at the same time quantifying		Attendance at applied
them at extremely low concentration levels.	Problem-Based Learning	activities and seminars
Analytical separation techniques have demonstrated		activities and seminars

over time high performance and an applicability that makes them indispensable in environmental studies. The course presents the essential theoretical and practical notions related to the analytical separation techniques most used in environmental studies, emphasizing the applicability of these techniques for well-defined purposes.

The acquisition of this knowledge will help students in choosing and applying the most appropriate methods for analyzing pollutants and mixtures of pollutants in various environmental matrices as well as in processing and interpreting the results obtained from measurements.

CONTENT:

- 1. MODULE 1. Introduction to Analytical Separology. Requirements. Performance. Applicability. [4 hours]
- 2. MODULE 2. Classification of analytical separation techniques. Retention mechanisms. Gaussian distribution. Chromatographic peak. Chromatograms. [4 hours]
- 3. MODULE 3. Terms specific to separation techniques. Retention parameters. Capacity factor. Resolution. Asymmetry. Qualitative and quantitative analysis. [4 hours]
- 4. MODULE 4. Liquid chromatography. Types of liquid chromatography methods. Thin layer chromatography. Column chromatography. HPLC, IC [4 hours]
- MODULE 5. Gas chromatography.
 Instrumentation. Electrophoretic techniques.
 Coupled techniques. TLC-MS, HPLC-MS, GC-MS [4 hours]
- 6. MODULE 6. Two- and multidimensional separation methods. Introductory notions. Orthogonality. Peak capacity. Construction and representation of the chromatogram [4 hours]
- 7. MODULE 7. Notions of validation of analytical methods. Processing and interpretation of measurement data. [4 hours]

Problematization

Exercises and Problem Solving

Case Study Presentation

Heuristic Conversation

Explanation

Modeling

is mandatory. The number of absences accepted in special situations is a maximum of 20% of the total number of hours.

Students who are absent from the seminar / laboratory cannot appear for the exam.

The individual project is handed to the course instructor before the exam.

Plagiarism involves the cancellation of the work developed by the student.

Cases of exam fraud involve: automatic exclusion from the exam, awarding a grade of 1 and the proposal to expel the student in question.

Bibliography:

- a) Required bibliography:
- 1. Liteanu C., Gocan S., Bold A. Analytical Separatorology, Dacia Publishing House, Cluj-Napoca, 1981.
- 2. Gocan S. High-performance chromatography, Part I-II, Dacia Publishing House, Cluj-Napoca, 1998-2000.
- 3. Săndulescu R., Roman L. Validation of analysis and control methods. Theoretical and practical foundations, Medical Publishing House, Cluj-Napoca, 1998.
- 4. Beldean-Galea M. S. Course material unpublished material
 - b) Optional bibliography:
- 5. Petrovicy M. et al. Environmental Analysis: Emerging Pollutants, Liquid Chromatography: Application, Chapter 14. Elsevier, 2013, http://dx.doi.org/10.1016/B978-0-12-415806-1.00014-0

- 6. Blumberg L.M., Theory of Gas Chromatography, Chap. 2, Gas chromatography, Elsevier, 2012, file:///C:/DOCUME~1/SIMION/LOCALS~1/Temp/3-s2.0-B978012385540400002X-main.pdf
- 7. Jennings G., Poole C.F., Chapter 1 Milestones in the Development of Gas Chromatography, Gas Chromatography, 2012, pp. 1-17, http://ac.els-cdn.com/B9780123855404000018/3-s2.0-B9780123855404000018-main.pdf?_tid=c b9e58c0-5136-11e4-99df-00000aab0f27&acdnat=1413025831_2cb60f78084b872ddebba9d71ad84d7e
- 8. Purcaro G. et al., Hyphenated liquid chromatography—gas chromatography technique: Recent evolution and applications, Journal of Chromatography A, Volume 1255, 2012, pp. 100-111
- 9. Seeley J.V., Chapter 7 Multidimensional and Comprehensive Gas Chromatography, 2012, Pages 161-185, http://ac.els-cdn.com/B9780123855404000079/3-s2.0-B9780123855404000079-main.pdf?_tid=2 e995790-5137-11e4-8e9e-00000aab0f26&acdnat=1413025997_75ef31ee65d8cc751f2a2ff8a6827467

8.2 Seminar / laboratory	Teaching methods	Remarks
Objectives: Developing students' skills to choose and	Problem-Based Learning	
apply a specific analysis method for the		
determination of certain classes of pollutants. It is	Experiment	
desired that students know different analysis	Problematization	
methods, their performances and applicability as	1 Toolemanzation	
well as how to use and statistically interpret the	Exercises and Problem	
measurement results obtained in practical	Solving	
applications.	Heuristic Conversation	
Content:	Heuristic Conversation	
	Explanation	
1. Specific terms used in analytical separology.		
Retention parameters. Capacity factor. Resolution.	Modeling	
Asymmetry. Chromatograms, interpretation.		
Qualitative and quantitative analysis [4 hours]		
2. Liquid chromatography. Thin layer		
chromatography. Applications to the determination		
of some dyes in liquid samples [4 hours]		
3. Column liquid chromatography. Applications to the determination of some pesticides in liquid		
samples [4 hours]		
samples [4 nours]		
4. Gas chromatography. Applications to the		
determination of volatile/semivolatile pollutants in		
ambient air. [4 hours]		
5. Techniques coupled with mass spectrometry. GC-		
MS. Qualitative and quantitative analysis in GC-MS.		
[4 hours].		
[].		
6. Notions of validation of analytical methods.		
Numerical applications and statistical calculation [4		
hours]		
7. Presentation of experimental results papers [2		
hours]		

8. Lab activity examination [2 hours]	
Bibliography:	
Similar to that provided in 8.1.	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The discipline possesses a special epistemological status, with intense inter- and transdisciplinary valences.
- The discipline integrates with currently critical areas of interest internationally, such as the detection and determination of trace chemical compounds present in mixtures in various environmental factors.
- Therefore, the studied discipline offers graduates the ability to contribute to solving complex situations related to pollution and its effects.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Correctness of answers The ability to identify problems with critical status	Exam	60%
10.5 Seminar/lab activities	The ability to apply acquisitions in various concrete situations The ability to solve problems and integrate the acquisitions acquired in the study of this discipline with the acquisitions of related disciplines.	Essay / portfolio Continuous assessment, through oral verification tests	40%

10.6 Minimum performance standards

- Knowledge of the basic concepts of the discipline and awareness of the interdependencies between them
- Application of acquisitions to problem solving and practical applications
- Systematic integration of the acquisitions of this discipline with acquisitions characteristic of other disciplines of the study program.

Date Signature of course coordinator Signature of seminar coordinator

04.12.2024

Date of approval Signature of the head of department