SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

	2.1 Name of the discipline			Physics I					
2.2 Course coordinator		Professor Dr. Gabor (Timar) Alida Iulia							
	2.3 Seminar coor	dinat	tor	Professor Dr. Gabor (Timar) Alida Iulia					
	2.4. Year of	I	2.5 Semes	ter	I	2.6. Type of	E	2.7 Type of	Mandatory
	study					evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hou
					rs
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					2
Evaluations					2
Other activities:					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	N/A
4.2. competencies	N/A

5. Conditions (if necessary)

5.1. for the course	Blackboard/Whiteboard, Videoprojector	
5.2. for the seminar /lab	Laboratory	
activities		

6. Specific competencies acquired

8.1 Course

Professional competencies	 Acquiring a deep understanding of physical concepts (mechanical, electromagnetic, optical) applied to natural processes (e.g., gravitational field, Earth's magnetic field, pollutant transport) as well as in the development of environmental technologies (e.g., noise pollution reduction, implementation of renewable versus conventional energy sources). Developing the ability to propose sustainable solutions for environmental issues based on the application of fundamental physical principles and critical analysis. Developing skills in using measurement equipment and instruments, as well as analyzing and interpreting experimental data, in order to conduct rigorous and innovative research in the field of environmental protection.
Transversal competencies	 Acquiring an environmentally responsible component. Development of a critical rationale, based on the performance and interpretation of quantitative analyses. The ability to understand the laws that govern the Universe The application of acquired knowledge in subjects such as Soil Science, Environmental Chemistry, Environmental Radioactivity, etc.

7. Objectives of the discipline (outcome of the acquired competencies)

3	
discipline	fundamental principles of physics and their application in the environmental
	field, thereby preparing students to address environmental issues with a
	sound scientific and technological foundation. The course aims to develop
	essential theoretical and practical skills, including the analysis of natural
	phenomena, the use of measurement equipment, and the interpretation of
	experimental data. Additionally, students will be encouraged to apply
	physical concepts to assess and solve current environmental challenges such
	as pollution, climate change, and the use of energy sources. The general
	objective is to create an interdisciplinary framework where students can
	integrate knowledge from physics, chemistry, and biology to propose
	innovative and sustainable solutions.
7.2 Specific objective of the	The specific objective of this course is to provide students with a deep
discipline	understanding of the fundamental principles of physics applied to the field
-	of environmental studies. The course aims to develop essential skills for
	analyzing natural and technological processes through the lens of
	mechanical, electromagnetic, and optical concepts. Students will learn how
	to apply these principles to solve environmental problems such as pollution
	or the use of renewable energy sources. Additionally, the course emphasizes
	the development of critical thinking and the ability to propose sustainable
	solutions. Another objective is to familiarize students with the use of
	measurement equipment and instruments, which are essential for conducting
	experimental research. The course will enable students to understand the
	physical laws governing natural phenomena and apply this knowledge in
	interdisciplinary fields such as environmental chemistry or radioactivity.
8. Content	·

Teaching methods

Remarks

7.1 General objective of the The general objective of this course is to provide a solid understanding of the

1 ntroduction to Environmental Physics:	Interactive expecure	Structured as 2 hours classes
ntroduction to Environmental Physics: Massurement Systems and Englamental	Interactive exposure	Structured as 2 nours classes
Measurement Systems and Fundamental	Explanation Conversation	
Concepts	Didactical	
	demonstration	
2. Elements of Mechanics: Motion and the Law	Interactive exposure	Structured as 2 hours classes
of Gravitation	_	Structured as 2 flours classes
of Gravitation	Explanation Conversation	
	Didactical	
	demonstration	
2 Applications Deleted to Metion in the		Standard of 2 hours along
3. Applications Related to Motion in the	Interactive exposure	Structured as 2 hours classes
Gravitational Field	Explanation	
	Conversation	
	Didactical	
4 D ' E 1D' '1 C	demonstration	G 1 21 1
4. Dynamics: Forces and Principles of	Interactive exposure	Structured as 2 hours classes
Mechanics	Explanation	
	Conversation	
	Didactical	
	demonstration	
5. Momentum, Energy, and Conservation:	Interactive exposure	Structured as 2 hours classes
Natural Energy Sources	Explanation	
	Conversation	
	Didactical	
	demonstration	
6. The Law of Universal Gravitation and	Interactive exposure	Structured as 2 hours classes
Terrestrial Phenomena	Explanation	
	Conversation	
	Didactical	
	demonstration	
7. Practical Applications of Mechanics	Interactive exposure	Structured as 2 hours classes
	Explanation	
	Conversation	
	Didactical	
	demonstration	
8. Electrostatics and Electricity in the	Interactive exposure	Structured as 2 hours classes
Environment	Explanation	
	Conversation	
	Didactical	
	demonstration	
9. Magnetism: From the Earth's Magnetic Field	Interactive exposure	Structured as 2 hours classes
to the Aurora Borealis	Explanation	
	Conversation	
	Didactical	
10.0 111	demonstration	
10. Oscillations and Waves: Natural Phenomena	Interactive exposure	Structured as 2 hours classes
and Applications	Explanation	
	Conversation	
	Didactical	
	demonstration	
11. The Electromagnetic Spectrum: Theory and	Interactive exposure	Structured as 2 hours classes
Applications	Explanation	
	Conversation	
	Didactical	
	demonstration	

12. Optical Phenomena in Nature: Perception of	Interactive exposure	Structured as 2 hours classes
Color	Explanation	
	Conversation	
	Didactical	
	demonstration	
13. Interference and Diffraction	Interactive exposure	Structured as 2 hours classes
	Explanation	
	Conversation	
	Didactical	
	demonstration	
14. Recap of Theoretical Concepts	Interactive exposure	Structured as 2 hours classes
	Explanation	
	Conversation	
	Didactical	
	demonstration	

Bibliography:

Brinkman A., (2008), Physics of the Environment, Imperial College Press, 228 pg.

Dicu T. – Suport de curs (format electronic - CD)

Faraoni V., (2006), Exercises in Environmental Physics, Springer, 342 pg.

Ngo C., (2002), L'energie. Ressources, technologies et environnement, Paris, Dunod, 174 pg.

Rodrigues A., Sardinha R., Pita G., (2021), Fundamental principles of Environmental Physics, Ed. Springer, Kindle Edition.

1. Simth C., (2001), Environmental physics, New York, Routledge, 304 pg.

1. Simul C., (2001), Environmental physics, New	Tork, Routledge, 304 p	Č
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Numerical Calculations	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
2. Units of Measurement. Multiples and	Experiment	Structured as 2 hours classes
Submultiples	Explanation	
•	Conversation	
3. Processing Experimental Data	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
4. Graphs	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
Scalar Quantities. Vector Quantitie	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
6. Study of Motion. Applications	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
7. Study of Energy	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
8. Demonstrating the Phenomenon of	Experiment	Structured as 2 hours classes
Reflection and Refraction. Laws of	Explanation	
Reflection and Refraction	Conversation	
Study of Converging and Diverging	Experiment	Structured as 2 hours classes
Lenses. Determining Focal Length	Explanation	
	Conversation	
10. Determining Gravitational Acceleration	Experiment	Structured as 2 hours classes
Using a Gravitational Pendulum	Explanation	
<u> </u>		

	Conversation	
11. Determining an Unknown Resistance	Experiment	Structured as 2 hours classes
Using Ohm's Law	Explanation	
	Conversation	
12. Electricity and Power	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
13. Study of a Solar Cell	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
14. Colloquium	Experiment	Structured as 2 hours classes
	Explanation	
	Conversation	
Bibliography:		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

10. Evaluation

2012/02000000			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Knowledge of the	Written exam	80
	theoretical concepts		
	presented in the course		
10.5 Seminar/lab activities	Assignments	Evaluation of the practical	20
	-	work	
10.6 Minimum nonformana estandarde			

10.6 Minimum performance standards

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding. Attendance to laboratory activities is mandatory. A minimum grade of 5 is required to pass the exam.

Date

Signature of course coordinator

Signature of seminar coordinator

Profesor Dr. Gabor (Timar) Alida Iulia

4.12.2024

Date of approval

Signature of the head of department