SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

	2.1 Name of the	discij	pline	Ph	ysics	s II			
2.2 Course coordinator			As	Associate prof. Begy Robert					
	2.3 Seminar coor	dina	tor	As	socia	ite prof. Begy Robert	t		
	2.4. Year of	Ι	2.5 Semes	ter	II	2.6. Type of	E	2.7 Type of	Mandatory
	study					evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28	
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	N/A
4.2. competencies	N/A

5. Conditions (if necessary)

5.1. for the course	Blackboard/Whiteboard, Videoprojector
5.2. for the seminar /lab	Laboratory
activities	

6. Specific competencies acquired

Acquiring a deep understanding of physical concepts (mechanical, electromagnetic, Professional competencies optical) applied to natural processes (e.g., gravitational field, Earth's magnetic field, pollutant transport) as well as in the development of environmental technologies (e.g., noise pollution reduction, implementation of renewable versus conventional energy sources). Developing the ability to propose sustainable solutions for environmental issues based on the application of fundamental physical principles and critical analysis. Developing skills in using measurement equipment and instruments, as well as analyzing and interpreting experimental data, in order to conduct rigorous and innovative research in the field of environmental protection. Acquiring an environmentally responsible component. Development of a critical rationale, based on the performance and interpretation of competencies Transversal quantitative analyses. The ability to understand the laws that govern the Universe The application of acquired knowledge in subjects such as Soil Science, Environmental Chemistry, Environmental Radioactivity, etc.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	The general objective of this course is to provide a solid understanding of the
discipline	fundamental principles of physics and their application in the environmental
1	field, thereby preparing students to address environmental issues with a
	sound scientific and technological foundation. The course aims to develop
	essential theoretical and practical skills, including the analysis of natural
	phenomena, the use of measurement equipment, and the interpretation of
	experimental data. Additionally, students will be encouraged to apply
	physical concepts to assess and solve current environmental challenges such
	as pollution, climate change, and the use of energy sources. The general
	objective is to create an interdisciplinary framework where students can
	integrate knowledge from physics, chemistry, and biology to propose
	innovative and sustainable solutions.
7.2 Specific objective of the	The specific objective of this course is to provide students with a deep
discipline	understanding of the fundamental principles of physics applied to the field
_	of environmental studies. The course aims to develop essential skills for
	analyzing natural and technological processes through the lens of
	mechanical, electromagnetic, and optical concepts. Students will learn how
	to apply these principles to solve environmental problems such as pollution
	or the use of renewable energy sources. Additionally, the course emphasizes
	the development of critical thinking and the ability to propose sustainable
	solutions. Another objective is to familiarize students with the use of
	measurement equipment and instruments, which are essential for conducting
	experimental research. The course will enable students to understand the
	physical laws governing natural phenomena and apply this knowledge in
	interdisciplinary fields such as environmental chemistry or radioactivity.
8. Content	interests of factors such as environmental elements of factoactivity.

8. Content

8.1 Course	Teaching methods	Remarks
1. Concepts of Fluid Statics. Pressure. Archimedes'	Interactive exposure	Structured as 2 hours
Law	Explanation	classes
	Conversation	

		Didactical demonstration	
2.	Fluid Dynamics. Continuity Equation.	Interactive exposure	Structured as 2 hours
	Bernoulli's law. Applications	Explanation	classes
		Conversation	
		Didactical demonstration	
3.	Concepts of Thermodynamics: Temperature and	Interactive exposure	Structured as 2 hours
	Heat.	Explanation	classes
		Conversation	
		Didactical demonstration	
4.	Thermodynamic Principles. Internal Combustion	Interactive exposure	Structured as 2 hours
	Engines.	Explanation	classes
		Conversation	
		Didactical demonstration	
5.	Mechanical and Electromagnetic Waves. The	Interactive exposure	Structured as 2 hours
	Doppler Effect	Explanation	classes
		Conversation	
		Didactical demonstration	
6.	Lenses, Mirrors, and Optical Instruments.	Interactive exposure	Structured as 2 hours
		Explanation	classes
		Conversation	
		Didactical demonstration	
7.	Light Absorption. Beer-Lambert Law	Interactive exposure	Structured as 2 hours
		Explanation	classes
		Conversation	
		Didactical demonstration	
8.	Wave-Particle Duality. The External	Interactive exposure	Structured as 2 hours
	Photoelectric Effect.	Explanation	classes
		Conversation	
		Didactical demonstration	
9.	Concepts of Atomic Physics.	Interactive exposure	Structured as 2 hours
		Explanation	classes
		Conversation	
		Didactical demonstration	
10.	The Bohr Model	Interactive exposure	Structured as 2 hours
		Explanation	classes
		Conversation	
		Didactical demonstration	
11.	The Atomic Nucleus and Radioactivity	Interactive exposure	Structured as 2 hours
	Phenomena	Explanation	classes
		Conversation	
		Didactical demonstration	
12.	Nuclear Energy. Nuclear Reactor	Interactive exposure	Structured as 2 hours
		Explanation	classes
		Conversation	
		Didactical demonstration	
13.	Modern notions in physics.	Interactive exposure	Structured as 2 hours
		Explanation	classes
		Conversation	
		Didactical demonstration	
14.	Recap of Theoretical Concepts	Interactive exposure	Structured as 2 hours
	•	Explanation	classes
		Conversation	
		Didactical demonstration	
		1	

Gabor A. Fizică II – suport de curs (https://enviro.ubbcluj.ro/wp-content/uploads/2022/04/FIZICA-SUPORT-CURS_IM-I.pdf)

Faraoni V., (2006), Exercises in Environmental Physics, Springer, 342 pg.

Ngo C., (2002), L'energie. Ressources, technologies et environnement, Paris, Dunod, 174 pg.

Presură C., (2014), Fizica povestită. Ed. Humanitas, București, 644 pg.

Rodrigues A., Sardinha R., Pita G., (2021), Fundamental principles of Environmental Physics, Ed. Springer, Kindle Edition.

1. Simth C., (2001), Environmental physics, New York, Routledge, 304 pg.

1. Simth C., (2001), Environmental physics, New Yo		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Dimensionality	Experiment	Structured as 2 hours
	Explanation	classes
	Conversation	
2. Determination of Atmosheric Pressure	Experiment	Structured as 2 hours
	Explanation	classes
	Conversation	
3. Applications of Archimedes' Law	Experiment	Structured as 2 hours
	Explanation	classes
	Conversation	
4. Determination of the Specific Heat Capacity	Experiment	Structured as 2 hours
of Water	Explanation	classes
72 3002	Conversation	
5. Phase Transformations	Experiment	Structured as 2 hours
	Explanation	classes
	Conversation	
6. Calibration of a Thermometer	Experiment	Structured as 2 hours
	Explanation	classes
	Conversation	
7. Study of the Gas Law	Experiment	Structured as 2 hours
,	Explanation	classes
	Conversation	
8. Construction of a Microscope	Experiment	Structured as 2 hours
1	Explanation	classes
	Conversation	
9. Building a Prism Monochromator	Experiment	Structured as 2 hours
	Explanation	classes
	Conversation	
10. Obtaining the Atomic Spectrum of Hg and He	Experiment	Structured as 2 hours
	Explanation	classes
	Conversation	
11. Analyzing the Spectrum Emitted by	Experiment	Structured as 2 hours
Hydrogen Atoms. Determing the Rydberg	Explanation	classes
Constant	Conversation	
Constant		
12. Determination of the wavelength of	Experiment	Structured as 2 hours
microwaves	Explanation	classes
iniciowaves	Conversation	
13. Milikan's experiment: Determining the	Experiment	Structured as 2 hours
elementary electric charge	Explanation	classes
elementary electric charge	Conversation	
14. Colloquium	Experiment	Structured as 2 hours
1 ii Conoquium	Explanation	classes
	Conversation	Clubbeb
Bibliography:	Conversation	
Dionographij.		

Gabor A. Fizică II – suport de curs (https://enviro.ubbcluj.ro/wp-content/uploads/2022/04/FIZICA-SUPORT-CURS_IM-I.pdf)

Anton M., (2010), Fizică experimentală, Cluj-Napoca, Presa Universitară Clujană, 209 pg.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content is consistent with the curriculum of similar national and international centers. The structure was created after studying the content of the program at the Faculty of Physics (Babeş-Bolyai University) or at the Institute of Environmental Physics (University of Bremen, http://www.pep.unibremen.de/service/lecturematerials/index.html).

10. Evaluation

		grade (%)
Knowledge of the theoretical concepts presented in the course	Written exam	80
Assignments	Evaluation of the practical work	20
	theoretical concepts presented in the course	theoretical concepts presented in the course Assignments Evaluation of the practical work

10.6 Minimum performance standards

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding. Attendance to laboratory activities is mandatory. A minimum grade of 5 is required to pass the exam.

Date Signature of course coordinator Signature of seminar coordinator

Asoc. Prof. Begy Robert Asoc. Prof. Begy Robert

4.12.2024

Date of approval Signature of the head of department

Prof. Dr. Rosu Cristina