SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Environmental Engineering

2. Information regarding the discipline

2.1 Name of the discipline	To	echnolo	gical ris	k asses	ssment			
2.2 Course coordinator		Assoc. Prof. Dr. Ing. Török Zoltán						
2.3 Seminar coordinate	or	Assoc. Prof. Dr. Ing. Török Zoltán						
2.4 Year of study	IV	2.5 Se	mester	VII	2.6. Type of	E	2.7 Discipline	Compulsory.
					assessment		regime	

3. Total estimated time (hours per semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 Seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 Seminar/Laboratory	28	
Time allotment:						
					urs	
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays					5	
Tutorship					0	
Evaluations					2	
Other activities:						

3.7 Total individual study hours	14
3.8 Total hours per semester	70
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

1 1		
4.1 Curriculum	•	knowledge of the fundamental elements of environmental science
		and engineering: chemistry, mathematics, physics, thermodynamics,
		unit operations, technological hazards and risks
4.2 Competences	•	Technical; use of the computer;

5. Conditions (if necessary)

5.1 For the Course	requires digital projector and laptop
5.2 for the seminar/lab	 access to computers for the use of modeling and simulation
activities	programs, access to online databases, access to information
	necessary for the development of the project.

6. Specific competences acquired

Professional competencies	 knowledge of basic methods of technological risk analysis; knowledge of the concepts and principles of carrying out technological risk analyses; acquiring the knowledge of preparing a technological risk analysis;
Transversal competences	 the ability to conduct literature research in all existing formats; knowledge of the use of computer programs; acquiring the knowledge of preparing a scientific project; teamwork;

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 studying and knowing the methods, techniques and procedures for technological risk assessment;
7.2 Specific objectives of the discipline	 the acquisition of technological risk management terminology; knowledge of the basic content of a safety report; knowledge of the qualitative risk analysis method: Preliminary Hazard Analysis (PHA); knowledge of quantitative risk analysis methods: physical effects by modeling chemical industrial accidents; knowledge of the use of the ALOHA modeling program
	 knowledge of how to prepare a technological risk analysis project, which is based on the use of the methods mentioned above.

8. Contents

8.1 Course	Teaching methods	Remarks
Introduction to Technological Risk Management . General.	lecture, interactive discussions	Terminology aspects. Films and images of technological disasters.
2. European and national regulations for the chemical industrial sector in order to prevent major accidents.	lecture, interactive discussions	Presentation of the European Seveso and national legislation
3. The framework content of a technological risk study involving hazardous substances. Risk assessment cycle.	lecture, interactive discussions	Presentation of subsequent legislation and risk study requirements.
4. Identification and analysis of technological hazards. Methods and techniques.	lecture, interactive discussions	Presentation of the most used methods and techniques.
5. Historical analyses. Databases.	lecture, interactive discussions	Presentation of disaster databases and legal requirements for reporting industrial accidents.
6. Qualitative risk analyses: Preliminary Hazard Analysis (PHA).	lecture, interactive discussions	Presentation of the method, with advantages and disadvantages. Solved examples.

7. Source terms	lecture, interactive discussions	Presentation of the
	discussions	factors and conditions that define the source
		of the accident.
0 T	14	
8. Types of technological accidents: fires, explosions,	lecture, interactive	Presentation of the
toxic dispersions.	discussions	types of possible
		accidents, sequences
		of events and
		connections between
		different possible
		situations.
9. Analysis of physical effects – release of hazardous		Presentation of
substances; Evaporation	discussions	mathematical models
		for modelling and
		simulating hazardous
		substance spills and
		evaporation of
		liquids.
10. Analysis of physical effects – toxic dispersions in the	lecture, interactive	Presentation of
atmosphere	discussions	mathematical models
		for modeling and
		simulating toxic
		dispersions.
11. Analysis of physical effects – fires and explosions	lecture, interactive	Presentation of
	discussions	mathematical models
		for modeling and
		simulating fires and
		explosions.
12. Quantitative risk analyses: Fault trees (FT).	lecture, interactive	Presentation of the
	discussions	method, with
		advantages and
		disadvantages. Solved
		examples.
13. Quantitative Risk Analyses: Event Trees (ET).	lecture, interactive	Presentation of the
	discussions	method, with
		advantages and
		disadvantages. Solved
		examples.
14. Summary course. General conclusions on risk		Summary. Recap.
assessment and communication.	discussions	Conclusions.
		Discussion of the
		examination.

Bibliography

Course Support:

• The presentations held at the course in PDF format, available at the FSIM library on CD and are sent to students upon request by email.

Books:

- Török Zoltán, Ajtai Nicolae, Ozunu Alexandru: Computational applications for assessing the risk of major industrial accidents involving hazardous substances, Ed. EFES, Cluj-Napoca, 2011.
- Alexandru Ozunu, Călin Anghel: Technological Risk Assessment and Environmental Security, Accent Publishing House, Cluj-Napoca, 2007.
- Alexandru Ozunu, Carmen Teodosiu: Prevention of Environmental Pollution, Transilvania University Publishing House, Braşov, 2002.
- Gheorghe Maria: Quantitative Evaluation of the Risk of Chemical Processes and Modeling of the Consequences of Accidents, Printech Publishing House, Bucharest, 2007.

- Frank P. Lees: Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Second edition, United Kingdom, 1996.
- Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.
- P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, The Hague, 1999.
- C. A. Ericson: *Hazard Analysis Techniques for System Safety*, Ed. Wiley-Interscience, New Jersey, 2005.
- American Institute of Chemical Engineers (AIChE): *Guidelines for Chemical Process Quantitative Risk Analysis*, Second Edition, New York, 2000.
- T. Kletz, *HAZOP & AN. Notes on the Identification and Assessment of HazardsHAZ*, Institution of Chemical Engineers, Fourth Edition, UK, 1999.
- N. Hyatt, Guidelines for Process Hazards Analysis, Hazard Identification & Risk Analysis, Ed. Dyadem Press, Ontario, 2003.

Articles:

- 1. Török, Z., Petrescu-Mag, R.-M., Mereuţă, A., Maloş C.-V., Arghiuş V., Ozunu, A., Analysis of territorial compatibility for Seveso-type sites using different risk assessment methods and GIS technique, Land Use Policy, https://doi.org/10.1016/j.landusepol.2019.02.037.
- 2. Ozunu A., Mereuta A., Török Z., Literat. L., 2017, A national hazard analysis and mapping for Seveso establishments, Journal of Engineering Sciences and Innovation, Vol.2, Issue 3, pg. 93-102.
- 3. Török Z., Ozunu A., 2015, Hazardous properties of ammonium nitrate and modeling of explosions using TNT equivalency, Environmental Engineering and Management Journal, Vol.14/11, pp. 2671-2678.
- 4. Török Z., Kovacs A., Ozunu A., 2015, Ammonium Nitrate explosions. Case study: the Mihăilești accident (2004), Romania, Ecoterra, 12(2), pp. 56-60.
- 5. Crăciun I., Török Z., Ozunu A., 2015, Comparative analysis of individual risk using different Probit functions in estimating heat radiation consequences, AES BIOFLUX, 7/2, pp. 223-229.
- 6. Gheorghiu A.-D., Török Z., Ozunu A., Antonioni G., Cozzani V., 2014, Comparative Analysis of Technological and Natech Risk for two Petroleum Products Tanks Located in a Seismic Area, Environmental Engineering and Management Journal, Vol.13/8, pp. 1887-1892.
- 7. GHEORGHIU A.-D., TÖRÖK Z., OZUNU A., ANTONIONI G., COZZANI V., 2014, Natech Risk Analysis in the Context of Land Use Planning. Case Study: Petroleum Products Storage Tank Farm Next to a Residential Area., Chemical Engineering Transactions, Vol. 36, pp. 439-445.
- 8. Zoltán TÖRÖK, Nicolae AJTAI, Adrian T. TURCU, Alexandru OZUNU Comparative consequence analysis of the BLEVE phenomena in the context on Land Use Planning; Case study: The Feyzin accident, Process Safety and Environmental Protection, 89 (2011) pp. 1-7.
- 9. TÖRÖK, Z., OZUNU, A., CORDOŞ E., Chemical risk analysis for land-use planning. I. storage and handling of flammable materials, Environmental Engineering and Management Journal, January 2011, Vol.10, No. 1, 81-88.
- 10. Zoltán TÖRÖK, Nicolae AJTAI, Alexandru OZUNU, Chemical Risk Area Estimation as a Tool for Efficient Emergency Planning, Studia Universitas Babeş Bolyai, Chemia series, 2009, ISSN 1224 7154.
- 10. Zoltán TÖRÖK, Alexandru OZUNU, 2010, Chemical risk assessment for storage of hazardous materials in the context of Land Use Planning. AES BIOFLUX 2(1): 33-56
- 11. OZUNU, A., TÖRÖK, Z., COSARA, V., CORDOS, E., DUTRIEUX, A., (2008), Vulnerability Mitigation and Risk Assessment of Technological Disaster, NATO Science for Peace and Security Series, E: Human and Societal Dynamics, Volume 35, Risk Assessment as a Basis for the Forecast and Prevention of Catastrophes, Edited by Ion Apostol, Wilhelm G. Coldewey, David L. Barry, Dieter Reimer, ISBN 978-1-58603-844-1, Springer Publishing House Netherlands.
- 12. L. ŞTEFĂNESCU, TÖRÖK, Z., F. SENZACONI, A. OZUNU, 2013, Quantitative fire risk assessment procedure at pesticide storage facilities in Romania, NATO Science for Peace and Security Series: Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe, Edited by L.Simeonov, F. Macaev and B. Simeonova, Springer Science+Business media B.V., pp. 249-256.

Legislation:

• Law 59 of 2016 on the control of major accident hazards involving dangerous substances

- ORDER No. 156/2017 of 11 December 2017 for the approval of the Methodological Norms regarding the elaboration and testing of emergency plans in case of major accidents involving hazardous substances
- ORDER No. 3710/1212/99/2017 of 19 July 2017 regarding the approval of the Methodology for establishing the appropriate distances from the potential sources of risk within the sites that fall under the provisions of Law no. 59/2016 on the control of the dangers of major accidents involving hazardous substances in spatial planning and urban planning activities
- ORDER No. 1175/2019/39/2020 of 20 December 2019 regarding the approval of the Procedure for the notification of activities that present dangers of major accidents involving hazardous substances
- ORDER No. 1176/2019/40/2020 of 20 December 2019 regarding the approval of the Procedure for the notification of major accidents involving hazardous substances, including in a cross-border context
- DECISION no. 557 of 3 August 2016 on risk management
- DIRECTIVE 2012/18/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 July 2012 on the control of major accident hazards involving dangerous substances, amending and subsequently repealing Council Directive 96/82/EC
- REGULATION (EC) NO. 1272/2008 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL OF 16 December 2008 on the classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, as well as amending Regulation (EC) no. 1907/2006

Access places: Central University Library, Library of the Faculty of Environmental Science and Engineering.

ISUMADECIP Electronic Library, Faculty of Environmental Science and Engineering *Web pages (Internet):*

http://echa.europa.eu/regulations/clp, http://ec.europa.eu/index_ro.htm, http://reach.anpm.ro/

https://www.mmediu.ro/categorie/legislatie/116 www.enviro.ubbcluj.ro, http://www.epa.gov.us,

https://minerva.jrc.ec.europa.eu/en/minerva

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Introduction to the topic of the semester	-lecture;	- Description of the topic.
project		- Study objectives
2. Analysis of the area of the studied site	-lecture;	- description of factors such as:
	- teamwork;	neighborhoods, climate, hydrology,
	-Brainstorming;	natural hazards, vulnerabilities.
3. Identification and assessment of	-lecture;	- the use of safety data sheets in the
technological hazards	- interactive	process of identifying hazards related
Substance-related hazards	discussions;	to substances used in technological
- aspects about the substance(s),		processes
physicochemical and toxicological properties		
that determine technological hazards		
- aspects related to protective measures and		
prevention of exposure		
4. Technological accidents involving the	-lecture;	- use of the eMARS electronic
studied substance	- interactive	database to identify possible
	discussions;	accidents
5. Preliminary hazard analysis (PHA)	-lecture;	- general description of the method
	- teamwork;	- solving examples in work groups
	-Brainstorming;	- completing the project
		- verification of projects;
6. Analysis of the physical effects of	-lecture;	- general description of physical
accidents (part 1)	- teamwork;	effects modeling
	-Brainstorming;	- building the scenarios based on
		those obtained in the PHA

	- activities by using	- Presentation of the ALOHA
	the computer;	modeling and simulation software
7. Analysis of the physical effects of	-lecture;	- general description of physical
accidents (part 2)	- teamwork;	effects modeling
	-Brainstorming;	- building the scenarios based on
	- activities by using	those obtained in the PHA
	the computer;	- simulation of accident scenarios
		with the ALOHA software
		- verification of projects;
8. Analysis of the physical effects of	-lecture;	- general description of physical
accidents (part 3)	- teamwork;	effects modeling
	-Brainstorming;	- building the scenarios based on
	- activities by using	those obtained in the PHA
	the computer;	- simulation of accident scenarios
		with the ALOHA software
		- verification of projects;
9. Quantitative analyses: Analysis of	-lecture;	- general description of the method
equipment failure frequencies (part 1)	- teamwork;	- solving examples in work groups
	-Brainstorming;	
10. Quantitative analyses: Analysis of	-lecture;	- general description of the method
equipment failure frequencies (part 2)	- teamwork;	- solving the problem in the project
	-Brainstorming;	- verification of projects;
11. Analysis of the frequencies of accidental	-lecture;	- general description of the method
scenarios (part 1)	- teamwork;	- solving examples in work groups
	-Brainstorming;	
12. Analysis of the frequencies of accidental	-lecture;	- general description of the method
scenarios (part 2)	- teamwork;	- solving the problem in the project
	-Brainstorming;	- verification of projects;
13. Estimation of technological risk – risk	-lecture;	- presentation of the results obtained
matrix. Calculation and presentation of risk.	-Brainstorming;	from the analyzes performed;
Final conclusions.	- activities by using	- verification of projects;
	the computer;	
14. Presentation of the projects		- presentation of projects;

Bibliography

Books:

- Török Zoltán, Ajtai Nicolae, Ozunu Alexandru: Computational applications for assessing the risk of major industrial accidents involving hazardous substances, Ed. EFES, Cluj-Napoca, 2011.
- Frank P. Lees: Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control, Second edition, United Kingdom, 1996.
- Van den Bosch, C. J. H., Weterings R.A.P.M: "Yellow Book": Methods for the Calculation of Physical Effects, Third edition, Committee for the Prevention of Disasters, Netherlands, 1997.
- P.A.M. Uijit de Haag, B.J.M. Ale: "Purple Book": Guidelines for Quantitative Risk Assessment, First edition, Committee for the Prevention of Disasters, The Hague, 1999.
- T. Kletz, *HAZOP & AN. Notes on the Identification and Assessment of HazardsHAZ*, Institution of Chemical Engineers, Fourth Edition, UK, 1999.
- N. Hyatt, *Guidelines for Process Hazards Analysis*, *Hazard Identification & Risk Analysis*, Ed. Dyadem Press, Ontario, 2003.

Articles

- Török, Z., Petrescu-Mag, R.-M., Mereuță, A., Maloş C.-V., Arghiuş V., Ozunu, A., Analysis of territorial compatibility for Seveso-type sites using different risk assessment methods and GIS technique, Land Use Policy, https://doi.org/10.1016/j.landusepol.2019.02.037.
- Kovacs, A., Bican-Brişan N., Maloş, C., Török, Z., Botezan, C., Ozunu, A., 2018, NaTech risk assessment at a gas expoitation well in Romania, Journal of Environmental Protection and Ecology, vol. 19(2), pp. 656-666.

- Ozunu A., Mereuta A., Török Z., Literat. L., 2017, A national hazard analysis and mapping for Seveso establishments, Journal of Engineering Sciences and Innovation, Vol.2, Issue 3, pg. 93-102.
- Radovici A T., Roman E., Török Z., Ozunu A., 2016, A risk assessment study for local critical infrastructures used in hazmat transportation, Studia Universitatis Babes-Bolyai Chemia, vol.3, pp. 379-389.
- Török Z., Ozunu A., 2015, Hazardous properties of ammonium nitrate and modeling of explosions using TNT equivalency, Environmental Engineering and Management Journal, Vol.14/11, pp. 2671-2678.
- Torok Zoltan, KOVACS Larisa Alexandra, Ozunu Alexandru, 2015, Ammonium Nitrate explosions. Case study: the Mihăileşti accident (2004), Romania, Ecoterra, 56-60.
- KOVACS Larisa Alexandra, Brisan Nicoleta-Sanda, Malos Cristian-Valeriu, Torok Zoltan, Ozunu Alexandru, 2015, Prerequisites of a NaTech event at a production gas well in Romania, Ecoterra, 36-43.
- Zoltán TÖRÖK, Nicolae AJTAI, Adrian T. TURCU, Alexandru OZUNU Comparative consequence analysis of the BLEVE phenomena in the context on Land Use Planning; Case study: The Feyzin accident, Process Safety and Environmental Protection, 89 (2011) pp. 1-7.
- TÖRÖK, Z., OZUNU, A., CORDOŞ E., Chemical risk analysis for land-use planning. I. storage and handling of flammable materials, Environmental Engineering and Management Journal, January 2011, Vol.10, No. 1, 81-88.
- Zoltán TÖRÖK, Alexandru OZUNU, 2010, Chemical risk assessment for storage of hazardous materials in the context of Land Use Planning. AES BIOFLUX 2(1): 33-56
- Crăciun I., Török Z., Ozunu A., 2015, Comparative analysis of individual risk using different Probit functions in estimating heat radiation consequences, AES BIOFLUX, 7/2, pp. 223-229.
- Gheorghiu A.-D., Török Z., Ozunu A., Antonioni G., Cozzani V., 2014, Comparative Analysis of Technological and Natech Risk for two Petroleum Products Tanks Located in a Seismic Area, Environmental Engineering and Management Journal, Vol.13/8, pp. 1887-1892.

Access places: Central University Library, Library of the Faculty of Environmental Science and Engineering.

ISUMADECIP Electronic Library, Faculty of Environmental Science and Engineering Web pages (Internet):

http://echa.europa.eu/regulations/clp, http://ec.europa.eu/index_ro.htm, http://reach.anpm.ro/ https://www.mmediu.ro/categorie/legislatie/116 www.enviro.ubbcluj.ro, http://www.epa.gov.us, https://minerva.jrc.ec.europa.eu/en/minerva

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The knowledge acquired during the course can be used in the following areas: environmental protection; in process industries: chemical, petro-chemical, pharmaceutical, food, etc.; the academic field;
- Graduates can prepare a technological risk study and work in the field of technological risk analysis and assessment.
- Potential employers: environmental agencies, county inspectorates for emergency situations, economic operators with a chemical industrial profile, environmental consulting firms, academic research environment.

10. Evaluation

Type of	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
activity			grade (%)
10.4	Each student is evaluated individually	Team project presentation	50 %
Seminar/lab	according to the following criteria:	(oral)	
activities	• the activity during the seminars/lab;	Project delivery (in	
	• the correctness of the answers given	electronic format)	
	to the questions		
	• accuracy in presentation;		

	General criteria for evaluating the		
	team project:		
	• the correctness of the project;		
	• compliance with the framework		
	content;		
	• scientific interpretation of the results;		
	• the general and aesthetic appearance		
	of the project.		
10.5 Course	• correctness of solving theoretical and	Final exam (written – 2	50%
	practical problems during the exam	hours)	
Minimum no	rformanaa atandard:	·	

Minimum performance standard:

- grade 5 from the project and grade 5 from the written exam
- Attendance at least 80% at seminar/laboratory classes.

Date	Signature of the course coordin	ator Signature of the	seminar coordinator
05 12 2024			\
05.12.2024 Date of appro		gnature of the head of departn	nent
11	•	1	