DISCIPLINE SHEET

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assesment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study Programme /	Environmental Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the	Technolog	Technologies for water management and treatment				
discipline						
2.2 Course coordinator Assistant Prof., PhD Manciula Dorin						
2.3 Seminar coordinator Assistant Prof., PhD Manciula Dorin						
2.4 Year of study 4 2.5	Semester 7	7	2.6. Type of	Е	2.7 Type of	Compulsory
			evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2	2	3.3 Laboratory / Seminar	2
		course		3.4. Project	
3.5 Total hours in the curriculum	56	Of which: 3.6	28	3.7 Laboratory	28
		course		3.8. Design	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes				20	
Additional documentation (in libraries, on electronic platforms, field documentation)				20	
Preparation for seminars / labs, homework, papers, portfolios and essays				20	
Tutorship				6	
Evaluations				2	
Other activities: visits, workshops, and other academic activities				2	
3.7 Total individual study hours 70					

3.7 Total individual study hours	70
3.8 Total hours per semester	126
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1 Curriculum	unit operations and chemistry.	
4.2 Competencies	 basic notions of chemistry and engineering, information and 	
	documentation, teamwork, use of computer technologies for data	
	acquisition and processing.	

5. Conditions (if necessary)

5.1 For the course	• lecture room (50-60 seats) with video projector.
5.2 For the seminar /	• laboratory D.0.2., equipped with water, electricity, glassware,
laboratory activities	specific equipment, work and protective equipment.

6. Specific competencies acquired

or Specific	competencies acquired
Professional competencies	 developing teamwork skills, relational thinking and finding concrete ways to approach and solve specific environmental problems at different levels of analysis (global, regional, local); critical analysis, application of models, theories and the use of notions in the field of fundamental sciences and engineering to address the specific problems of environmental knowledge and protection; explaining and interpreting properties, concepts, approaches, models and notions related to the fundamental and engineering sciences; presentation of projects related to engineering fields; recognition and description of elementary concepts, theories, methods and models relating to the basic sciences and engineering sciences.
Transversal competencies	 identifying and complying with the norms of ethics and professional deontology, assuming responsibilities for the decisions taken and the related risks; identifying roles and responsibilities in a multidisciplinary team and applying techniques for relationships and effective work within the team; efficient use of information sources and resources for communication and assisted professional training (Web portals, Internet, specialized software applications, databases, online courses, etc.), both in Romanian and in an international language; description, analysis and use of concepts and theories in the fundamental scientific fields (mathematics, physics, chemistry) and in the field of engineering sciences; description, analysis and use of concepts and theories in the economic-managerial field applied in the field of the environment.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 familiarizing students with aspects of water management and water resources management; knowledge of production technologies and ways of supplying drinking water to localities; knowledge of wastewater treatment technologies resulting from various anthropogenic activities; knowledge of the ways to limit pollutant emissions from diffuse sources of water pollution.
7.2 Specific objectives of the discipline	 development of technical skills for the quantitative assessment of environmental impacts; development and implementation of concepts related to the application of best available techniques in terms of water resources management.

8.1 Course	Teaching methods	Remarks
Course 1. Water management. General and introductory	Interactive lecture,	Attending the course
notions. The role and importance of water. Categories of	problematization,	is optional
waters. Water use. Water resources. Water use and socio-	learning based on case	
economic development.	studies and problems.	
Course 2. Ramnifications and the object of water	Interactive lecture,	Attending the course
management. Water balance. Water management works	problematization,	is optional
for uses. Management of high waters.	learning based on case	
	studies and problems.	
Course 3. Links between water management and	Interactive lecture,	Attending the course
treatment technologies and other technical disciplines.	problematization,	is optional
Quantitative and qualitative management. Water	learning based on case	
resources and requirements. The situation on the globe	studies and problems.	
and at the national level.		
Course 4. Exploitation of water management facilities.	Interactive lecture,	Attending the course
Sustainable development in the field of water. Economic	problematization,	is optional
and legislative aspects. Economic mechanism and	learning based on case	13 Optional
economic instruments. European and national water	studies and problems.	
policies.	studies and problems.	
Course 5. Mineral waters. Exploitation of mineral	Interactive lecture,	Attending the course
waters. Composition of mineral waters. Properties,	problematization,	is optional
indications and contraindications. Water treatment.	learning based on case	r
Drinking water quality criteria. Waterborne bacteria,	studies and problems.	
helminths, viruses and protozoa. Microbiological	r	
indicators of water quality.		
Course 6. Uniform processes in water treatment.	Interactive lecture,	Attending the course
Decanting of discrete and colloidal particles, flotation.	problematization,	is optional
Obtaining drinking and industrial water. Conventional	learning based on case	
treatment (retention on grates, filtration, sand removal,	studies and problems.	
sedimentation, coagulation-flocculation, salt removal,	•	
disinfection).		
Course 7. Obtaining drinking and industrial water.	Interactive lecture,	Attending the course
Advanced water treatment (aeration-oxidation, semi-	problematization,	is optional
permeable membrane processes, activated carbon	learning based on case	
adsorption, dissolved air flotation, change in the	studies and problems.	
concentration of flower in the water). Case studies:		
treatment of groundwater by aerobic and anaerobic		
processes and those with high hardness.		
Course 8. Technological processes of water treatment.	Interactive lecture,	Attending the course
Case study: surface water treatment, (conventional and	problematization,	is optional
combined processes) and technological treatment	learning based on case	
processes to obtain industrial water. Reducing water	studies and problems.	
consumption in technological processes. Case study: the		
technological process of papermaking.		
Course 9. The influence of anthropogenic activities on	Interactive lecture,	Attending the course
water resources. Water pollution. General aspects. Types	problematization,	is optional
of pollution. Pollutants. Sources of water pollution and	learning based on case	
their classification. Wastewater. Environmental	studies and problems.	
standards in the field of water quality.		
Course 10. Reducing pollution through the treatment	Interactive lecture,	Attending the course
and recirculation of industrial effluents. Wastewater	problematization,	is optional
monitoring. Unitary processes in water treatment and	learning based on case	
purification. Wastewater treatment methods.	studies and problems.	

Course 11. Physical purification processes.	Interactive lecture,	Attending the course
Gravitational separation, flotation, filtration,	problematization,	is optional
centrifugation. Membrane separation. Classification of	learning based on case	
membranes. Membrane structure. Osmosis and reverse	studies and problems.	
osmosis. Micro filtration and ultra filtration.		
Electrodialysis.		
Course 12. Unitary processes with transfer between	Interactive lecture,	Attending the course
phases. Liquid-liquid extraction. Stripping. Distillation	problematization,	is optional
and rectification. Foaming. Adsorption. Freezing.	learning based on case	
	studies and problems.	
Course 13. Chemical purification processes.	Interactive lecture,	Attending the course
Neutralization. Chemical reduction and oxidation.	problematization,	is optional
Precipitation. Coagulation and flocculation. Ion	learning based on case	_
exchange. Advanced purification. Removal of nitrogen	studies and problems.	
compounds and phosphorus.	-	
Course 14. Biological processes. Aerobic processes and	Interactive lecture,	Attending the course
anaerobic processes. Disinfection. Establishing the	problematization,	is optional
degree of purification. Technological schemes of	learning based on case	_
purification. Sludge management. Features. Preliminary	studies and problems.	
treatments. Sludge stabilization. Dehydration.	-	
Incineration. Composting. Sludge recovery.		

Bibliography

- Tehnologii de gospodărire și tratare a apelor Suport de curs;
- Roșu C. Gospodărirea apelor, Editura Orizonturi Universitare, Timișoara, 1999;
- Mioc D. C., Robescu D. N., Mioc M. Managementul industriei apei, Editura Tehnică, București, 2000;
- Robescu D., Lanyi S., Robescu D., Constantinescu I. Tehnologii, instalații și echipamente pentru epurarea apei, Editura Tehnică, București, 2000;
- Muntean V. C. Epurarea apelor uzate, Editura Oscar Print, București, 2001;
- Ianculescu O., Ionescu Gh., Racovițeanu R. Epurarea apelor uzate, Editura Matrix Rom, București, 2001
- Teodosiu C. Tehnologia apei potabile și industriale, Editura Matrix Rom, București, 2001;
- Robescu D., Lanyi S., Constantinescu I., Robescu D., Verestoy A. Wastewater treatment. Technologies, installations and equipment, Editura Tehnică, București, 2001;
- Robescu D., Robescu D., Lanyi S., Verestoy A. Fiabilitatea proceselor, instalațiilor și echipamentelor de tratare și epurare a apelor, Editura Tehnică, București, 2002;
- Ianculescu S. Utilizarea filtrelor de nisip la epurarea avansată a apelor uzate, Editura Matrix Rom, București, 2002;
- Coldea S. Difuzia și dispersia poluanților în geo fluide, Editura Presa Universitară Clujeană, Cluj-Napoca, 2002
- Racovițeanu G. Teoria decantării și filtrării apei, Editura Matrix Rom, București, 2003;
- Cauteș L, Licurici Gh., Călinescu C. Valorificarea ecologica a deșeurilor agro-zootehnice prin biotehnologii de epurare a apelor uzate, Suceava, 2003;
- Moldoveanu A. M. Patologia infecțioasă transmisă prin apă, Editura Matrix Rom, București, 2004;
- Robescu D., Verestoy A., Lanyi S., Robescu D. Modelarea și simularea proceselor de epurare, Editura Tehnică, București, 2004;
- Muntean I. O. Tehnici de depoluare a mediului. Îndrumar, Editura Universitas, Petroșani, 2004;
- Morar R., Muntean I. O., Cubleșan I., Almășan I. Tehnologii de depoluare a mediului, Editura Dacia, Cluj-Napoca, 2004;
- Viessman W., Hammer M. J. Water supply and pollution control, Upper Saddle River, N.J Pearson, Prentice Hall, 2005;

- Alvarez Pedro J. J., Illman Walter A. Bioremediation and natural attenuation. Process fundamentals and mathematical models, Hoboken, N. J : John Wiley & Sons, 2006
- Segneanu E. Modernizarea stațiilor de epurare, Editura Politehnică, Timișoara, 2006;
- Şerban P., Gălie A Managementul apelor. Principii și reglementări Europene, București, 2006;
- Coldea S. Analiza fenomenelor de transport implicate în poluarea fluidelor, Editura Matrix Rom, București, 2007;
- Cîrţînă D. Epurarea apelor uzate, Editura Academica Brâncuși, Târgu Jiu, 2007;
- Feldman D. L. Water policy for sustainable development, The Johns Hopkins University Press, Baltimore, 2007;
- Teodosiu C., Gavrilescu D., Ungureanu D. Practici de management durabil al apei în industria hârtiei, Editura Cermi, Iași, 2007;
- Nagy M. C. Optimizarea funcționării unui sistem de gospodărirea apelor în perioade secetoase, Editura Politehnică, Timișoara, 2008;
- Howes H. Strategic planning for water, Abingdon, OX: Taylor & Francis, 2008;
- Vigh M. T. Calitatea apei râurilor din Bazinul hidrografic al Târnavei, Editura Casa cărții de știință, Cluj-Napoca, 2008;
- Munteanu C., Dumitrașcu M., Iliuță A. Ecologie și protecția calității mediului, Editura Balneară, 2011;
- Bordeașu I., Dobândă E., Velescu C., Galeriu C. D., Baciu I. D., Manea A., Sucitu L., Bădărău R., Florescu C. – Probleme de hidrodinamică, rețele de conducte, canale și mașini hidraulice, Timișoara, 2013;
- Petrescu-Mag M. R., Petrescu D. C. Drinking water. Legislation, policy, economic aspects. Case studies from Cluj-Napoca, România, Editura Bioflux, 2014;
- Misca B. R. H. Procese de transport și transfer, Editura Presa Universitară Clujeană, 2014.
- Chiriac V. Terapia cu ape minerale, Editura Dexon, București, 2015;
- *** Urban waste water treatment in 2015-2021 Report, Environmental Protection Agency;
- *** Progress on wastewater treatment 2021 Global status;
- Mejia R., Gomez D., Quintero C. M., Maturana A. Industrial wastewater treatment technologies for reuse, recycle and recovery. Advantages, disadvantages and gaps, Research Squqre, DOI: https://doi.org/10.21203/rs.3.rs-1147300/v1, 2021;
- Bijekar S., Padariya H. D., Yadav K., V., Gacem A., Hasan M. A., Awwad N. S., Yadav K. K., Islam S., Park S., Jeon B. H. The state of the art and emerging trends in the wastewater treatment in developing nations, Water, Vol.14, p2537-2556, 2022;

Mojiri A., Bashir M. – Wastewater treatment. Current and future techniques, Water, Vol. 14, p.448-450, 2022.

8.2 Project (1 hour/week.) and lab (1 hour/week.)	Teaching methods	Remarks
Project 1. Presentation of the project topic and its	Conversation, interactive	Attendance at design
structure Presentation and organization of laboratory	lecture, problematization,	activities is
teaching activities by laboratory reports / papers and	learning based on case	mandatory.
work groups. Labor protection norms in the laboratory of	studies.	
water management and treatment technologies.		
Project 2. Elements of a water supply system. General	Conversation, interactive	Attendance at design
layout of the components of a water supply station.	lecture, problematization,	activities is
Water demand and requirement. Characteristic flow rates	learning based on case	mandatory
and calculation elements. Coefficients of daily and	studies, exercises,	
hourly variation. Dimensioning and verification flow for	calculations.	
system objects and for the development of localities.		
Project 3. Operation of water supply systems. Logic	Conversation, interactive	Attendance at design
schemes and block schemes. Series, parallel and	lecture, problematization,	activities is
alternative connections. Calculations on the safety		mandatory

assessment of a water supply system. Causes of insufficiency in the operation of a water supply system. Basic principles in the development of the technological treatment process for obtaining drinking and industrial water. Treatment processes for obtaining drinking and industrial water. Project 4 Postroint on grets: Elements of technological	learning based on case studies, exercises, calculations.	Attendance at design
Project 4. Restraint on grates. Elements of technological design of the sand removal basin, sedimentation equipment and coagulation-flocculation equipment. Equipment and ways of filtration, salt removal and water disinfection. Methods of storing and distributing water to consumers.	Conversation, interactive lecture, problematization, learning based on case studies, exercises, calculations.	Attendance at design activities is mandatory
Project 5. Sewerage systems and networks. General elements of sewerage network design. Drawing up a general scheme for a city wastewater treatment plant. Mechanical, biological and advanced wastewater treatment. Disinfection. Sludge treatment.	Conversation, interactive lecture, problematization, learning based on case studies, exercises, calculations.	Attendance at design activities is mandatory
Project 6. Calculation of the degree of purification required in terms of suspensions, BOD ₅ , oxygen, pH and toxic substances. Assessment of the environmental impact of a wastewater treatment plant. Environmental problems due to water pollution.	Conversation, interactive lecture, problematization, learning based on case studies, exercises, calculations.	Attendance at design activities is mandatory
Project 7. Calculations regarding the discharge of wastewater into the emissary. Self-purification of watercourses. Completing calculations, sketches and drawings.	Conversation, interactive lecture, problematization, learning based on case studies, exercises, calculations.	Attendance at design activities is mandatory
Laboratory 1. Measurement of the physicochemical indicators of water with the help of conductometric methods. Use of multi-parameter analyzer type measuring equipment.	Experiment	Attendance at practical activities is mandatory.
Laboratory 2. Sedimentation of water suspensions.	Experiment	Attendance at practical activities is mandatory
Laboratory 3. Determination of the hardness of wastewater and natural waters.	Experiment	Attendance at practical activities is mandatory
Laboratory 4. Determination of turbidity of water samples by means of optical analysis instruments.	Experiment	Attendance at practical activities is mandatory
Laboratory 5. Monitoring and phenomenological description of the domestic wastewater treatment process in the pilot station. Disinfection and elimination of some organic pollutants.	Experiment	Attendance at practical activities is mandatory
Laboratory 6. Analysis of water samples by determining chemical elements and pollutants by spectrophotometric method.	Experiment	Attendance at practical activities is mandatory
Laboratory 7. Laboratory colloquium	Examination	Attendance is mandatory.
Bibliography		

- STAS 1343/0-89 Alimentări cu apă. Determinarea cantitătilor de apă de alimentare. Prescriptii generale;
- STAS 1343/2-89 Alimentări cu apă. Determinarea cantităților de apă de alimentare pentru unități industriale;
- STAS 1478-90 Instalatii sanitare. Alimentarea cu apă la construcții civile și industriale. Prescripții fundamentale de proiectare;
- SR EN 805:2000 Alimentări cu apă. Condiții pentru sistemele și componentele exterioare clădirilor;
- SR EN 1508:2000 Alimentări cu apă. Prescriptii pentru sistemele si componentele pentru înmagazinarea apei;
- SR 10898:2005 Alimentări cu apă și canalizări. Terminologie;
- SR 1343-1:2006 Alimentări cu apă. Determinarea cantitătilor de apă potabilă pentru localităti urbane
- NP 133-2011. Partea 2-a. Normativ privind proiectarea, execuția și exploatarea sistemelor de alimentare cu apă și canalizare a localităților. Indicativ- Sisteme de canalizare a localităților.
- Bârsan E., Ignat C. Modalităti de evaluare a sigurantei unui sistem de alimentare cu apă.
- Robescu D., Lanyi S., Robescu D., Constantinescu I. Tehnologii, instalații și echipamente pentru epurarea apei, Editura Tehnică, București, 2000;
- Teodosiu C. Tehnologia apei potabile si industriale, Editura Matrix Rom, Bucuresti, 2001;
- Ianculescu O., Ionescu Gh., Racovițeanu R. Epurarea apelor uzate, Editura Matrix Rom, București, 2001:
- Giurconiu M., Mirel I., Carabeț A., Chivereanu D., Florescu C., Stăniloiu C. Construcții și instalații hidroedilitare, Editura de Vest, Timișoara, 2002;
- Misca R., Manciula D., Ozunu A. Caiet de lucrări practice pentru ingineria mediului, Editura Presa Universitară Clujeană, Cluj-Napoca, 2009;
- Florescu C., Mirel I., Stăniloiu C., Podoleanu C., Gîrbaciu A Îndrumător pentru calculul construcțiilor și instalațiilor de alimentări cu apă, Timișoara, 2015;
- Cîmpean M., Battes K., Momeu L. Hidrobiologie. Ape continentale. Ghid de lucrări practice, Editura Presa Universitară Clujeană, Cluj-Napoca, 2018; Mișca B. R. H. – Îndrumător de laborator și proiect pentru disciplina Fenomene de transport și transfer, Editura Presa Universitară Clujeană, 2018.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course, practical work and project present examples of calculation, case studies, problems and exercises in order to familiarize students with a series of qualitative and quantitative evaluations of various types of materials, the effects they bring to the environment, especially on water resources.

10 Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Theoretical knowledge acquired	Written exam	60 %
10.5 Laboratory / Project	6 experiments in the laboratory	Grading each practical work (experiment) executed in the laboratory	20 %
	7 stages of project implementation	Grading the project and the problems solved	20 %

participation in at least 80 % of the practical laboratory work (5 practical works out of 6) and timely delivery of laboratory reports;

- participation in at least 80% of the project implementation stages (6 stages out of 7) and submission of individual assignments on time;
- obtaining a grade of 5 in the laboratory colloquium and a grade of 5 in the exam.

Date	Signature of the	Signature of the	
	course coordinator	seminar coordinator	
04.12.2024			
	Make	Sale	
Date of approval	Signature	Signature of the head of department	