SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Environmental Science and Engineering
1.3 Department	Environmental Analysis and Assessment
1.4 Field of study	Environmental Engineering
1.5 Study cycle	Bachelor
1.6 Study programme /	Environmental Engineering
Qualification	

2. Information regarding the discipline

2.1 Denumirea disc	ciplin	ei Technolo	Technologies with low impact on the environment				
2.2 Titularul activităților de curs Prof.univ.dr.ing. Cristina Rosu							
2.3 Titularul activităților de seminar			Pr	of.univ. dr.ing. Cristina	a Ro	su	
2.4 Year of study	IV	2.5 Semester	7	2.6. Type of	C	2.7 Type of	Optional
				evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					12
Tutorship					
Evaluations					
Other activities:					2
		4.0			

3.7 Total individual study hours	42
3.8 Total hours per semester	98
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

- `	
4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	 Classroom of 40-50 seats equipped with video projector
5.2. for the seminar /lab	Seminar room with 40-50 seats equipped with video projector
activities	

6. Specific competencies acquired

Professional competencies	 Knowledge of the main categories of clean/low environmental impact technologies and identification of BAT (Best Available Technology) technologies and application methods Knowledge of the installations and equipment used in them and their operating principles Acquisition of the ecological, energy and economic advantages of the application of different types of clean / low environmental impact technologies compared to classical technologies Knowledge of the principles methodologies for assessing the environmental impact of industrial processes
Transversal competencies	 Information and documentation (at the library or online) Teamwork Case analysis
Tra	Identification of optimal solutions

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Knowledge of the main categories of clean/low environmental impact technologies and their ways of application
7.2 Specific objective of the discipline	 Knowledge of the main regulations in the field of environmental protection Knowledge of the key equipment used / limitations Strategies for reducing / limiting pollutant emissions at source Pollution prevention strategies Acquiring the energy, ecological and economic advantages of the application of different types of clean technologies compared to the classic ones Knowledge of the general aspects regarding the recovery of industrial waste

8. Content

8.1 Course 2 h / week	Teaching methods	Remarks
C 1 – Clean / low environmental impact technologies	Interactive lecture	Attendance at the course
(basic definitions on clean technologies, environmental		is optional, but it is
protection regulations, demarcation of clean technologies		recommended that
from depollution technologies)		students be present at
		least 7 courses (50%)
C 2 – Categories of clean/low environmental impact	Interactive lecture	
technologies and their application methods		
C 3 – Clean/low environmental impact industrial processes	Interactive lecture	
and technologies (types of technologies and areas of		
application)		
C 4 – Plants and equipment (key machinery) used in	Interactive lecture	
processes and . Clean industrial technologies / with low		
environmental impact		
C 5 – Energy, ecological and economic advantages in the	Presentation and	

application of different types of clean / low environmental	presentation of case
impact technologies compared to classic technologies	studies
C 6 – Recovery technologies applied in industry (types of	Presentation and
secondary energy resources, characteristics, mode of	presentation of case
appearance, calculations)	studies
C 7 – Industrial waste recovery (types of waste,	Presentation and
characteristics, calculations)	presentation of case
	studies
C8 – Assessment of the impact of industrial processes on	Presentation and
the environment (types of impact and ways of assessing	presentation of case
them)	studies
C 9 – Perspectives in the field of clean industrial	Interactive lecture
technologies with low environmental impact (development	
directions)	
C 10 – Case Analysis: Classical Technologies vs. Low	Presentation and
Environmental Impact Technologies	presentation of case
	studies
C 11 – Case analysis: calculation of specific impact	Presentation and
indicators.	presentation of case
	studies
C 12 – Case analysis: recovery and recovery of some types	Presentation and
of industrial waste	presentation of case
	studies
C 13 – Case analysis: capitalization of secondary energy	Presentation and
resources.	presentation of case
	studies
C 14 – Recap	
	<u> </u>

Bibliography

- 1. M. Ungureanu, R. Patrascu, "Tehnologii curate", Editura AGIR, Bucuresti, 2000
- 2. R. Patrascu, C. Raducanu, "Tehnologii complexe de recuperare a caldurii in industrie" Editura PRINTECH, Bucuresti, 1998

3. C. Rosu, "Tehnologii cu impact redus asupra mediului" - Suport de cursuri, editia 2020
Seminary 2 h / week Teaching Remarks

0.2 C. Rosa, S. Telmologii eu impaet redas asapia medie		,
8.2 Seminary 2 h / week	Teaching	Remarks
	methods	
S 1 – Presentation of the seminar theme and organization	Lecture	80% mandatory attendance
of the choice of individual seminar topics		at seminars
S 2 – In-depth study of a technology with low	Presentation and	
environmental impact.	presentation of	
	case studies	
S 3 – Study of ways to apply some technologies with low	Presentation and	
environmental impact.	presentation of	
	case studies	
S 4 – Detailed study of a piece of equipment (key	Presentation and	
machine) with a technology with low environmental	presentation of	
impact.	case studies	
S 5 – Energy calculations for a technology with low	Presentation and	
environmental impact.	presentation of	
	case studies	
S 6 – Study of a recovery technology applied in industry	Presentation and	
	presentation of	
	case studies	
S 7 – Study of the recovery of an industrial waste and its	Presentation and	
recovery	presentation of	
	case studies	
S 8 – Calculations of impact indicators of industrial	Presentation and	

processes	presentation of	
	case studies	
S 9 si S 10– Study visit (4 hours)	field	
S 11 si S 12 - Study visit (4 hours)	field	
S 13 – Recovery of a maximum of one seminar		
S 14 – Presentation of the report	Examinare orala	Nota seminar
-		(30% din nota catalog)
	•	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The accumulated knowledge is useful both to environmental managers in the field of industrial economic operators, but also to local authorities

10. Evaluation

Obtaining a grade of 5 in the oral exam

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	Evaluation of the	Oral exam	70%	
	accumulated theoretical			
	knowledge			
10.4 Seminar/lab activities				
	Assessment	A report that has a case	30%	
		study to analyze		
10.6 Minimum performance standard				
Obtaining a grade of 5 in the seminar				

Date	Signature of course coordinator	Signature of seminar coordinator
06.12.2024	C. S	C. S. S.
Date of approval		Signature of the head of department